archives-ouvertes

Finding constancy in linear routines

Steven De Oliveira

» To cite this version:

Steven De Oliveira. Finding constancy in linear routines. Logic in Computer Science [cs.LO]. Univer-
sité Paris-Saclay, 2018. English. <NNT: 2018SACLS207>. <tel-01898536>

HAL Id: tel-01898536
https://tel.archives-ouvertes.fr/tel-01898536
Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://tel.archives-ouvertes.fr/tel-01898536
https://hal.archives-ouvertes.fr

o UNIVERSITE

universite U

PARIS-SACLAY

Finding constancy in linear
NNT : 2018SACLS207 routines

Thése de doctorat de I'Université Paris-Saclay
préparée a l'Université Paris-Sud 11

Ecole doctorale n°580 : SCIENCES ET TECHNOLOGIES DE
L'INFORMATION ET DE LA COMMUNICATION (STIC)

Spécialité de doctorat: Informatique

Thése présentée et soutenue a Palaiseau, le 28/06/2018, par

Steven de Oliveira
Composition du Jury :

Nicole Bidoit-Tollu

Professeur, Paris Saclay (- LRI) Président
Andreas Podelski

Professeur, University of Freiburg Rapporteur
Ahmed Bouajjani

Professeur, Université Paris Diderot (- IRIF) Rapporteur
Sylvie Putot

Professeur, Ecole Polytechnique (- LIX) Examinateur
Antoine Miné

Professeur, Université Paris 6(— LIPG) Examinateur
Saddek Bensalem

Professeur, Université Grenoble Alpes(— VERIMAG) Directeur de thése
Virgile Prevosto

Ingénieur de recherche, CEA(- CEA, List) Co-Directeur de these

=
O
-
®)
e’
O
@)
[®)
()
©
()
(V)]
QD
L
|—

Synthese

La criticité des programmes dépasse constamment de nouvelles frontieres car
ils sont de plus en plus utilisés dans la prise de décision (voitures autonomes,
robots chirurgiens, etc.). Le besoin de développer des programmes stirs et de
vérif er les programmes existants émerge donc naturellement.

Pour prouver formellement la correction d'un programme, il faut faire
face aux déf s de la mise a 1’échelle et de la décidabilité. Programmes com-
posés de millions de lignes de code, complexité de l'algorithme, concur-
rence, et méme de simples expressions polynomiales font partis des prob-
lemes que la vérif cation formelle doit savoir gérer. Pour y arriver, les méth-
odes formelles travaillent sur des abstractions des programmes étudiés af n
d’analyser des approximations de leur comportement. L'analyse des boucles
est un axe entier de la vérif cation formelle car elles sont encore aujourd hui
peu comprises. Certaines d’entre elles peuvent facilement étre traitées, pour-
tant il existe des exemples apparemment tres simples mais dont le comporte-
ment n’a encore aujourd’hui pas été résolu (par exemple, on ne sait toujours
pas pourquoi la suite de Syracuse, simple boucle linéaire, converge toujours
vers 1). L’approche la plus commune pour gérer les boucles est 'utilisation
d’invariants de boucle, c’est a dire de relations sur les variables manipulées
par une boucle qui sont vraies a chaque fois que la boucle recommence. En
général, les invariants utilisent les mémes expressions que celles utilisées
dans la boucle : si elle manipule explicitement la mémoire par exemple, on
s’attend a utiliser des invariants portant sur la mémoire. Cependant, il existe
des boucles contenant uniquement des affectations linéaires qui n’admettent
pas d’invariants linéaires, mais polynomiaux.

Cette these présente de nouvelles propriétés sur les boucles linéaires et
polynomiales. Il est déja connu que les boucles linéaires sont polynomi-
alement expressives, au sens ou si plusieurs variables évoluent linéairement
dans une boucle, alors n'importe quel mondéme de ces variables évolue linéaire-
ment. La premiere contribution de cette thése est la caractérisation d’une
sous classe de boucles polynomiales exactement aussi expressives que des
boucles linéaires, au sens ot il existe une boucle linéaire avec le méme com-
portement. Ensuite, deux nouvelles méthodes de génération d’invariants
sont présentées. La premiere méthode est basée sur 'interprétation abstraite
et s'intéresse aux filtres linéaires convergents. Ces filtres jouent un réle im-
portant dans de nombreux systemes embarqués (dans 1’avionique par ex-
emple) et requierent 1'utilisation de flottants, un type de valeurs qui peut
mener a des erreurs d’imprécision s’ils sont mal utilisés. Aussi, la présence
d’affectations aléatoires dans ces filtres rend leur analyse encore plus com-
plexe. La seconde méthode traite d'une approche différente basée sur la
génération d’invariants pour n’importe quel type de boucles linéaires. Elle
part d’'un nouveau théoréme présenté dans cette these qui caractérise les
invariants comme étant les vecteurs propres de la transformation linéaire
traitée. Cette méthode est généralisée pour prendre en compte les conditions,
les boucles imbriquées et le non déterminisme dans les affectations.

La génération d’invariants n’est pas un but en soi, mais un moyen. Cette

ii

these s’intéresse au genre de problémes que peut résoudre les invariants
générés par la seconde méthode. Le premier probléme traité est probleme de
'orbite (Kannan-Lipton Orbit problem), dont il est possible de générer des
certif cats de non accessibilité en utilisant les vecteurs propres de la trans-
formation considerée. En outre, les vecteurs propres sont mis a I'épreuve en
pratique par leur utilisation dans le model-checker CaFE basé sur la verif ca-
tion de propriétés temporelles sur des programmes C.

Les résultats expérimentaux des outils en comparaison de l'état de l'art

existant démontrent une efficacité notable. En outre, leur développement dans
le langage de programmation OCaml garantit leur fiabilité et leur mise en

open-source contribue a I'écosysteme des programmes libres.

iii

Abstract

The criticality of programs constantly reaches new boundaries as they are re-
lied on to take life-or-death decisions in place of the user (autonomous cars,
robot surgeon, etc.). This raised the need to develop safe programs and to
verify the already existing ones. Anyone willing to formally prove the sound-
ness of a program faces the two challenges of scalability and undecidability.
Million of lines of code, complexity of the algorithm, concurrency, and even
simple polynomial expressions are part of the issues formal verification have
to deal with. In order to succeed, formal methods rely on state abstraction to
analyze approximations of the behavior of the analyzed program. The anal-
ysis of loops is a full axis of formal verification, as this construction is still
today not well managed. Though some of them can be easily handled when
they perform simple operations, there still exist some seemingly basic loops
whose behavior has not been solved yet (the Syracuse sequence for example
is suspected to be undecidable [Con13]). The most common approach for the
treatment of loops is the use of loop invariants, i.e. relations on variables
that are true at the beginning of the loop and after every step. Intuitively,
invariants are expected to use the same set of expressions used in the loop:
if a loop manipulates the memory on a structure for example, invariants will
naturally use expressions involving memory operations. However, there ex-
ist loops containing only linear instructions that admit only polynomial in-

n

variants (for example, the sum on integers) ¢ can be computed by a linear
loop and is a degree 2 polynomial in n), henlceousing expressions that are syn-
tactically absent of the loop. The intuition stated above is thus a bit naive and
we should seek for more relations between invariants and loop instructions.
This thesis presents new insights on loops containing linear and polynomial
instructions. It is already known that linear loops are polynomially expres-
sive, in the sense that if a variable evolves linearly, then any monomial of this
variable evolves linearly. The first contribution of this thesis is the extraction
of a class of polynomial loops that is exactly as expressive as linear loops, in
the sense that there exists a linear loop with the exact same behavior. Then,
two new methods for generating invariants are presented.

e The first method is based on abstract interpretation [CH78] and is fo-
cused on a specific kind of linear loops called linear filters. Linear filters
play a role in many embedded systems (plane sensors for example) and
require the use of floating point operations, that may be imprecise and
lead to errors if they are badly handled. Also, the presence of non de-
terministic assignments makes their analysis even more complex.

e The second method [OBP16] treats of a more generic subject by find-
ing a complete set of linear invariants of linear loops that is easily com-
putable. This technique is based on the linear algebra concept of eigenspace.
It is extended to deal with conditions, nested loops and non determin-
ism in assignments [OBP17].

iv

Generating invariants is an interesting topic, but it is not an end in itself,
it must serve a purpose. This thesis investigates the expressivity of invari-
ants generated by the second method by generating counter examples for
the Kannan-Lipton Orbit problem [KL80]. It also presents the tool PILAT im-
plementing this technique and compares its efficiency technique with other
state-of-the-art invariant synthesizers. The effective usefulness of the invari-
ants generated by PILAT is demonstrated by using the tool in concert with
CaFE [OPB], a model-checker for C programs based on temporal logics.

Remerciements

Durant ces quatre ans passés au CEA, j’ai fait beaucoup de rencontres. J’en ai
tellement fait qu’il est difficile de quantifier la valeur de chacun d’entre eux
et d’en faire un classement. Non pas qu'’il faille forcément en faire un, mais je
n’arrive pas a me faire a 1'idée qu'il faille mettre un nom en premier. Dois-je
mettre le nom de la personne qui m’a le plus aidé, de la premiére personne
avec qui jai travaillé, qui m’a le plus motivé ou qui a le plus contribué a cette
these ? A vrai dire cette personne est la méme, et sans lui cette theése n’aurait
jamais vu le jour. Merci Virgile. Je remercie tout autant mon directeur de
these, Saddek Bensalem, qui m’a soutenu tout le long de cette expérience. Je
tiens également a remercier la présidente du Jury Professeur Nicole Bidoit,
les Professeurs Ahmed Bouajjani et Andreas Podelski pour la pertinence de
leur rapport, ainsi que le Professeur Antoine Miné et le Professeur Sylvie
Putot.

Avant de commencer cette these, j’avais certains a-prioris sur le déroule-
ment d'une these, notamment sur sa difficulté et la quantité de stress qu’elle
géneére. J'ai passé trois années pleines de rires et de bons moments qui ont
éclipsé la grande majorité des difficultés, notamment grace au soutien du
Laboratoire de Streté et Sécurité du Logiciel et du Département tout entier,
avec une mention spéciale a Hugo qui a d&i supporter son insupportable co-
bureau. En vrac, je remercie Alexandre, André, Benjamin, Boris, David, Di-
ane, Florent, Francois, Frank, Jacques-Charles, Jean-Christophe, Jean-Yves,
Julien, Lionel, Mathieu, Nikolai, Quentin, Sébastien, Tristan, Valentin, Vin-
cent, Zak, ainsi que I'ensemble des acteurs en herbe (et Frédérique 'actrice
professionnelle), les permanents, doctorants et post-doctorants dont j’oublie
le nom mais que je n’oublierai jamais.

Contrairement a ce que I'on peut penser, un thésard a une vie a coté de
la thése. Cette vie a forgée par des bons et des mauvais moments, mais je
n’aurais jamais pu arriver la ot j’en suis sans 'amour de mes parents, José
et Patricia (et de toute ma famille bien evidemment, mais la il y a vraiment
beaucoup de monde), sans le soutien d’Adeline, ni sans 1'amitié de Guil-
laume et de Pierrot. Je vous suis éternellement redevable.

Oh, et un conseil aux doctorants et futurs doctorants qui ont eu le courage
de lire jusqu’ici : ecrire une page de remerciements, c’est plus difficile qu’il
n’y parait. Ne vous y prenez pas comme moi, a la derniére minute.

vii

Contents

I Formal verification 1
1 Introduction 3
1.1 Context e 3
1.1.1 Theelectronicboat 3

1.1.2 Originsofbugs 4

113 Getridofbugs 6

114 Formalmethods 6

115 Loops.o e 8

1.2 Overview and contributions 9
2 Mathematical definitions of program verification 11
21 Linearalgebra 12
2.1.1 Vectorspaces 12
2.1.2 Linear transformations and matrices 13

2.1.3 Duals and orthogonalspace 15
2.1.4 FEigenvalues and eigenvectors 15

2.1.5 Properties of the determinant 15

21.6 Jordannormalform 16

22 Programmingmodel 17
221 Statemachines, 17

222 Computersystems 19

23 Modelchecking 20
231 Models e 20

232 Temporallogics 21

233 Model-checking 22

2.3.4 Limitations 22

235 ThetemporallogicCaRet 23
Recursive state machines. 23
Nestedwords. 25

The CaRet Temporal Logic 26

2.4 Invariance and inductivity Lo o000 27
241 Floyd-Hoare axiomatic semantics 27

242 Contracts e 27

243 Inductivity o oo oo 28

244 The field of invariant generation 28
Dynamicanalysis 29

Acceleration 29

viii

Contents

Direct techniques

2.5 Abstractinterpretation L.
2.5.1 Intuition of abstract interpretation

252 Abstractdomains oL

2.5.3 A semantics on abstract values

254 Loops and widening operators

25,5 A widely used framework

II Polynomial invariants for polynomial loops

3 Polynomial loops don’t exist

3.1 Elevation of linear transformations
3.1.1 Principle of the linearization

3.1.2 Linearization

3.1.3 Linearizable and exponential

3.2 Linearization.
321 Intuition

3.22 Linearization theorem
Solvable mappings are linearizable
Non-solvable mappings are not linearizable. .

33 Algorithm
3.3.1 Solvabilitytest

3.3.2 Linearization

3.4 Properties of elevated matrices
3.4.1 Elevationmatrix

3.42 Eigenvector decomposition of W4(A)

3.5 Application to formal verification

4 A widening operator for the zonotope abstract domain

4.1 Approximation of convergent linear filters
42 Context o .
421 The family of the numerical linear filters . . .
422 The zonotope abstract domain
4.3 Synthesis by parametrized variation
43.1 Description of themethod
4.3.2 Inclusion of meta-zonotopes
44 Completness on linear filters
4.5 Experiments and conclusion

5 Eigenvectors as linear invariants of linear loops

51 Overview
52 Simpleloops o oL

521 Semi-invariants

5.2.2 Eigenvectors are invariants
53 Conditions Lo oL
54 Nestedloops
55 ThecaseA=1

..... 44

Contents ix
551 Thevariablel, 83
5.5.2 Quantified expression of invariants as eigenvectors. . . 84
553 Elevationdegree. 85
56 Inequalities. 87
5.6.1 Convergence and divergence 87
5.6.2 Convergent invariants and eigenvectors 87
57 Nondeterminism 89
5.7.1 Non deterministic transformations 89
572 Generation of a candidate invariant 90
573 Optimizing expressions 91
574 Convergence 91
575 Initialstate. 93
6 How precise can invariants be ? 95
6.1 The Orbit Problem 95
6.1.1 The Kannan-Lipton Orbit problem 95
6.1.2 Eigenvectors as certificates 96
6.2 Certificate sets of the rational Orbit Problem 97
Case 1: there exist null eigenvalues 98
6.2.1 Case 2: there exist eigenvalues Aand |A\| #1. 99
Real eigenvalues. 99
Certificateindex. 101
Complex eigenvalues. 101

6.2.2 Case 3: all eigenvalues have a modulus equal to 1 and
the matrix is not diagonalisable 102
Real eigenvalues. 102
Complex eigenvalues. 103

6.2.3 Case 4: eigenvalues all have a modulus equal to 1 and
the transformation is diagonalizable 104
6.3 General existence of a certificate for the integer Orbit Problem 106
6.4 Perspectives L L o L 107
III Implementation and experimentations 109
7 Pilat: A polynomial invariant synthesizer 113
71 Pilattool 113
7.1.1 Architecture overview 113
712 Layers 114
7.2 Experimentations and comparison with existing tools 117
8 CaFE: model checking 121
81 Motivation o o 121
8.2 CaFE:amodel checker of CaRet formulas 122
Soundness. oL 122
Comparison of similar automatons 124
83 OverviewofCaFE., 124
8.4 Applicationtoconcurrency 126

X Contents
IV Perspectives 131
9 Conclusion 133
91 Solvability 133
911 Polynomial similarity 133

912 Infinitesystems 134

9.2 Invariant generation 134
9.21 Generalization of the parametrized widening operator 134

922 Spectraltheory 135

9.3 Usefulness of eigenvectors 135
9.3.1 Complete characterization of certificates 135

932 Pilatextensions L 135

933 Temporallogic 135
Bibliography 137
A Pilat architecture 145
A1l TheRingsignature 145
A.2 TheMatrixsignature 145
A.3 The Polynomial signature 146

B Pilat results on deterministic and non deterministic loops 149
Bl Examplel 149
B.2 Dampenedoscillator 149
B.3 Harmonicoscillator 0 L. 149
B4 SymplecticSEU Oscillator 150
B.5 [AGGI2]filter 150
B.6 Simplefilter 0 o L. 150
B.7 Example3 o 150
B.8 Linearfilter 151
B9 Leadlagcontroller 151
B.10 Gaussianregulator 152
B.11 Controller 152

B.12 Low passfiltero o L 153

Part 1

Formal verification

Chapter 1

Introduction

Contents
11 Context.ottt 3
1.1.1 Theelectronicboat 3
1.1.2 Originsofbugs 4
1.1.3 Getridofbugs, 6
1.1.4 Formalmethods 6
115 Loops. e 8
1.2 Overview and contributions 9

Everyday, a ship sails in the binary sea.

The captain shouts its instructions to the deck hands, giving to each of them
specific instructions.

Clear the deck of every single useless resource.

Reach the maximum speed.

And avoid all the reefs.

Storms are coming, and care is the burden of chiefs.
What if one of the men fails to achieve its deed?

Will the tides crash the boat with tremendous forces?
Will their journey end with Neptune’s introductions?

Dangerous is sailing in the binary sea.

1.1 Context

1.1.1 The electronic boat

Ensuring a boat will reach its destination is a difficult task. Every single
person on the ship must be of use and know precisely what to do, when to
do it and what to expect from the others. The whole system is functionning
thanks to the collaboration of all the local actors. In this analogy, computer
systems are electronic boats.

4 Chapter 1. Introduction

Since Turing’s formalization of computer systems in 1936, the field of
computer science has been and is still exponentially growing. Where me-
chanical machines require bolts, gears and mechanical inputs, computers re-
quire memory, instructions and numerical inputs. Computers have been set
up in order to perform simple calculations extremely fast. Modern proces-
sors are able to process more than 2 billion operations per second.

1.1.2 Origins of bugs

Many users face bugs at a non critical scale that can be relatively easily solved,
often requiring them at most to reboot their machine. In the mean time,
computer systems influence our lives at a wider scale as embedded systems
(computer systems as part of a larger device) are used in traffic controlling,
avionics, energy management, economy or autonomous driving to give a
few. Such critical fields require an extremely high level of trust as their fail-
ure can cause huge damages in terms of human lives, ecological environ-
ment and economical resources. The issue of bugs is even harder considering
that even the smallest bug can have terrible effects on the short and the long
term. One of the bug with that could have had the most terrible consequence
has happened during the cold war, in the USSR. In 1983, a nuclear early-
warning system detected multiple ballistic missiles launched from bases in
the US, even though no missile had been. While the worst has been avoided
thanks to the discernment of the person in charge, this bug could literally
have wiped out mankind as we know it. More recently the Meltdown and
Spectre bugs [Koc+18], discovered in 2018, affected Intel cores so hard the
only patch solving the issue induces a loss of performance of 5-30%. Even
the said patch contained bugs that forced Intel to ask users to stop down-
loading it. Computer systems tend nowadays to become autonomous and
make their own decisions, based on algorithms. It is vital to certify that these
systems are functioning correctly.

Computers are extremely complex machines, sending information as bi-
nary signals (sequences of 1s and 0s). Instead of working directly in binary,
multiple layers of abstractions have been created to help computer scientists
to express their computations. As Figure 1.1 shows, it is necessary to go
through multiple steps to get an idea understood by a computer. Each of these
steps can be flawed, causing different kind of bugs.

e An algorithm is a sequence of understandable instructions that require
an input and produces an output'. Programmers can make mistakes
writing an algorithm by not thinking everything through. For exam-
ple, let us consider the Euclidean division algorithm for calculating the
quotient ¢ of two integers = and y. Starting with ¢ = 0, it consists in de-
creasing x of y and add 1 to ¢ until < y. At the end, ¢ should contain
the quotient of x and y.

A cooking recipe is an algorithm for example, its input being ingredients and its output
being a cake.

1.1. Context 5

Programmer
Computer

has an .
idea is understood

by

Programming

Algorithm is written gets
with a language translated
into

FIGURE 1.1: From the thinking of a programmer to the compre-
hension of the computer.

This simple algorithm contains a bug. In the case where y < 0 this
algorithm will never stop.

e Assume now we have an algorithm that we know contains no mis-
take. There exist plethora of different languages (C, OCaml, C++, Java,
Python, ...) that we can choose to write out algorithm with. The rep-
resentation by a programming language of an algorithm is called its
implementation. An implementation may require to use data structures
that are out of the scope of the algorithm, but that enhances its effi-
ciency. For example, if our algorithm has to save the value of multiple
elements, it can use a structure of set to save them and access them. The
implementation of sets is irrelevant to the functioning of the algorithm
in itself, but its functioning must be understood by the programmer.
Otherwise, the programmer may use them wrong which could cause
issues. Among others, the Java implementation of sets require a total
order’ on the elements of the set. If the programmer cannot provide
such an order, the implementation will not be valid. This shows that
bugs can take their roots in the most unexpected parts of a program.

e Assume now we manage to write a program that is correct. We need
to translate it into assembly to be understood by the computer. This
translation is performed by an independent program, the compiler. As
a program, it can contain bugs and therefore insert bugs in the original
program.

e Once the program is written in assembler, there is one last step to cross.
Computers are able to read assembler instructions as binary signals
made out of electricity. Physical interferences can however alter these
signals and provoke undesired behaviors on the system. This kind of
bugs is particularly hard to solve as the programmer has very few ways
to physically protect a system.

This thesis will focus on the correctness of the transition between the al-
gorithm state to the program state.

2A total order < on a set of elements S must verify Vz,y € S,z < yory <z

6 Chapter 1. Introduction

1.1.3 Getrid of bugs

While it is possible for simple algorithms to be proven correct by hand, in-
dustry requires safety on millions lines of code (LoC) algorithms. The PDF
viewer you may be using right now to read this document has been devel-
oped with more than 100000 LoC®. It is necessary for provers to rely on com-
puters to automatize the verification task, which is humanely impossible to
handle. And yet, the problem of proving the correct behavior of a program
is undecidable in general. The most famous undecidable problem in com-
puter science is the halting problem, stating : does there exist a program A able
to decide that a program P with an input I ends in finite time ? If such a program
existed, then it would be possible to create a program B (cf Figure 1.2) such
that:

1. if B ends, then B doesn’t end;
2. if B does not end, then B ends.

As this is clearly absurd, the halting problem is undecidable. There exist mul-
tiple similar problems that can be reduced to the halting problem, in the sense
that if they admit a solution, an algorithm solving the halting problem can be
built. The Rice Theorem [Ric53] generalizes this principle and states that the
verification of any non trivial semantic property (i.e. non syntactical prop-
erties that are not true nor false) on a Turing-complete machine/language is
undecidable in general. This is applicable on properties like “the program
never fails” or “this program is a virus”.

1.1.4 Formal methods

As we saw, anyone willing to formally prove a large program faces the two
challenges of scalability and undecidability. They can be overcome by giv-
ing up completeness (i.e. giving up the ability of disproving a property) or
correctness (i.e. giving up the ability of proving a property). To lighten the
burden of proving large programs, the field of formal methods provide tech-
niques and tools to ease and automatize proofs (or automatize the search of
counter examples).

When programmers try to find bugs in its program without formal meth-
ods, they can either launch their code and check if the output is consistent
with their expectations or read their code to check if there is something miss-
ing. Formal methods are basically the automation of these two intuitions,
respectively called dynamic analysis and static analysis.

Dynamic analysis is based on the analysis of execution paths of a program
by executing them with different inputs. If a tested execution is not conform-
ing to the program specifications, then dynamic can provide it as a counter
example to the verifier. On the other hand, if every tested execution satisfies
the specifications, it is impossible to conclude on the correctness of the pro-
gram as the set of every possible input is too large to be exhaustively tested.

3The size of MuPDF, a lightweight PDF viewer, has approximatively 140000LoC

1.1. Context

P o —> P(I) ends
P(l) does
| /ﬁ\ not end
P
P >

| - A ~ ENDS

B(l) ends
if B(l) does
B — not end

| ——— E3 B(l) does
not end if
B(l) ends

FIGURE 1.2: Construction of an impossible program.

8 Chapter 1. Introduction

Static analysis is complementary to dynamic analysis. The semantic of
each instruction, defined as the most precise mathematical characterization
of program behaviors, is abstracted to a simpler one. This simplification al-
lows different kind of techniques to infer information on these simplified
programs, that are also correct on the original programs. Static analysis tech-
niques tend to over approximate the program behavior. As a consequence,
the main issue of static analysis is to miss some important properties that
have not been kept by the program abstraction.

Static analysis itself can be divided in many different fields, whose most
used today are abstract interpretation, model checking and deductive verification.

Abstract interpretation aims at inferring logical properties on a pro-
gram by propagating abstractions of states. For example, values of integer
variables can be abstracted by intervals modified by the program instruc-
tions. Such a method requires to define a new semantic of instructions and
expressions so that they are consistent with abstract values.

Model checking consists in comparing the possible program executions
to a model-based specification. The program as well as the negation of the
specification must admit an automaton representation* that are explored si-
multaneously and exhaustively to check if there exists an execution of the
program model that matches an execution of the specification model.

Deductive verification is the closest approach to mathematical reason-
ing. The program is specified with contracts that it must satisfy. Preconditions
give constraints on the input of the program, postconditions give constraints
on its output, and assertions are properties that are always verified at a given
point of a program. Deductive verification reasons with these constraints to
prove the correctness of a program.

1.1.5 Loops

As computer systems are expected to repeat the same task for an indefinite
amount of time, loops are at the core of programming. Almost every interest-
ing algorithm contains at least one. Though some of them can be easily han-
dled when they perform simple operations, there still exist some very simple
loops whose behavior has not been solved yet. The Syracuse sequence for
example (S,,)nen is defined as follows:

1. if S, is even, then S, | = %,‘
2. otherwise, 5,1 = 3.5, + 1.

For every tested initial value so far, this sequence eventually reaches 1. As
simple as it may seem, proving that for every S, the sequence reaches 1 has

*An automaton, as defined in the next Chapter, is an oriented graph with extra properties
on edges and nodes.

1.2. Overview and contributions 9

still not been proven and is today suspected to be undecidable [Con13]. Lin-
ear loops, like the Syracuse sequence, are of high interest in the field of formal
verification as they lie at the border of undecidability. In general, the easiest
way (and seemingly the most efficient way) to handle loops in proofs is to
delete them. With an over-approximation of the number of times the loop is
taken, this can be done by unrolling loop. When there is no information about
the number of necessary unrollings, it is still possible to over-approximate the
loop behavior, in the sense of finding relations on variables that are true when
the loop ends. Those over approximations are commonly called invariants.

This thesis will give new insights on the undecidability border of linear
loops (i.e. loops in which expressions are linear combinations), especially
by proving that a subclass of polynomial loops (i.e. loops with polynomial
expressions) are as expressive as linear loops. It also extracts a complete
characterization of linear invariants of linear loops, which can be applied
for solving the Kannan-Lipton Orbit problem [KL80] and help formal tools
to conclude their proofs.

1.2 Overview and contributions

This first part introduces the context of this thesis along with Chapter 2, pre-
senting the standard notations of static analysis and linear algebra that are
used in the next chapters. The fundamental content of this thesis is devel-
oped in Part II.

e Chapter 3 presents the concept of linearization. This study of polyno-
mial loops (loops with polynomial assignments) formally prove they
can be divided into 2 different types: those that can be represented by
linear applications and those that admit an exponential behavior.

e The next two Chapters study the problem of generating invariants for
linear loops. Chapter 4 presents a method for detecting good candidate
invariants found by an abstract interpretation analysis with the zonotope
domain on linear filters (linear loops with specific hypotheses). Chap-
ter 5 presents a general characterization of linear invariants for linear
loops. Combined with the results of the previous chapter, this char-
acterization is generalizable to polynomial invariants for multi-path,
nested and non deterministic loops.

The following Chapter 6 is devoted to the use of the previous characteri-
zation to synthesize proofs of different instances the Kannan-Lipton Orbit
problem [KL80].

The last part of this thesis introduces two tools. The first, Pilat, imple-
ments in Chapter 7 the algorithm described in Chapter 5 with all its exten-
sions for generating invariants for C programs. The practical use of invari-
ants is shown in Chapter 8 by a presentation of CaFE, a model-checker using
the informations provided by Pilat to prove temporal properties expressed
in the temporal logic CaRet.

Chapter 2

Mathematical definitions of
program verification

11

Contents
21 Linearalgebra. 12
211 Vectorspaces 12
2.1.2 Linear transformations and matrices 13
2.1.3 Duals and orthogonalspace 15
214 Eigenvalues and eigenvectors 15
2.1.5 Properties of the determinant 15
2.1.6 Jordannormal form 16
2.2 Programmingmodel 17
22.1 Statemachines 17
222 Computersystems 19
23 Modelchecking 20
231 Models 20
232 Temporallogics 21
233 Model-checking 22
234 Limitations 22
235 ThetemporallogicCaRet 23
2.4 Invariance and inductivity 27
241 Floyd-Hoare axiomatic semantics 27
242 Contracts e 27
243 Inductivity oo oo oo 28
244 The field of invariant generation 28
2.5 Abstractinterpretation. 30
2.5.1 Intuition of abstract interpretation 30
252 Abstractdomains 31
25.3 A semantics on abstractvalues 31
254 Loops and widening operators 33

255 A widely used framework 34

12 Chapter 2. Mathematical definitions of program verification

2.1 Linear algebra

Linear algebra is the branch of mathematics studying vectorial spaces and
linear transformations. It plays an important role in the next chapters. The
principal definitions and notations used in linear algebra are developed in
this section. A more in-depth presentation can be found in [WBR13]

2.1.1 Vector spaces

A field K is a set of elements, called scalars, associated with two operators +
and *. Both operators are associative (¢ + (b+c¢) = (a+b) +cand a* (b*c) =
(a*b) * c) and commutative (v +w = w + v and v * w = w * v). Multiplication
is distributive over addition (a * (b + ¢) = a * b+ a * ¢). Both these operators
admit a neutral element, respectively Ok (or 0) and 1k (or 1), such that for all
v €K, v+0g =vand v*1lg = v. Every element of K admits an inverse for the
+ operator, in the sense that for any v there exists w such that v +w = Og. The
inverse of v by the + operator is denoted —v. Also, every element except Ox
admits an inverse for the * operator, in the sense that for any v, there exists w
such that v x w = 1g and w is denoted v—'.

Vectors are n-tuples of elements of K; the set of every vector of size n will
be denoted K" (Cartesian product). Let v = (vy,...,v,) and w = (wy, ..., wy,)
two vectors of K". The addition operator is extended to vectors by adding
each coordinates (v + w = (v; + wy, ..., v, + w,)) and vectors can be multi-
plied by scalars (k « v = (k * vy, ...,k % v,,)). Scalar or vectorial expressions
involving only those operators are called linear combinations. v and w are
collinear if there exists & such that £ * v = w. Otherwise, v and w are said
independent. Independence can be generalized to sets of vectors. A set B
of m vectors is said independent if for all non-trivial linear combination (i.e.
linear combinations involving at least one non null vector) f : (K")™ — K"
we have f(B) # (0, ...,0)

K-vector spaces are subsets of K" stable by addition and scalar multiplication.
Here are some example of vector spaces:

o K"

e {(0,...,0)}
o {v:3kFv=k=x(0,.,0,1)+k *(1,0,..,0)}

In the last example, two vectors are used to construct every element of the
vector space. These vectors form a generator family F of this vector space,
and Vectg(F) denotes the vector space generated by F with scalar coeffi-
cients in K. A base of vector space is an independent generator family, and
its size is called the dimension of the vector space. The third example admits
B = {(0,...,0,1);(1,0,...,0)} as a minimal base, thus its dimension is 2. The
dimension of K" is n, and the dimension of {(0, ...,0)} is 0. For our purposes,
we will only study properties on vector spaces of finite dimension, but there
exists vector spaces of infinite dimension (for example, polynomials with one
variable X are linear combinations of 1, X, X2, ...).

2.1. Linear algebra 13

A family of vectors B is associated with a determinant det(B), which is
defined as follows:

n

>) B

oEY, J=

[y

where ¥, represents the set of permutations of n elements, ¢ the signature
of a permutation (e(c) = (—1)V(©) with N(o) the number of inversions of o)
and B; ; the j" component of the i"" vector of B. The determinant is non null
if and only if the family B is independent.

2.1.2 Linear transformations and matrices

Linear transformations are applications mapping a vectorial space to another.
They are only allowed to use scalar multiplications of variables and addi-
tions. Hence, a linear transformation f follows two canonical properties:

o f(v)+ flw)=flv+w)
o kx f(v)=f(kxv)

Vectors themselves describe linear transformations thanks to the scalar
product operator.

Definition 1 Let v = (vy,...,v,) and w = (wy, ..., w,) two vectors. The scalar
product of v and w is denoted (v, w) and is defined as follows:

n

(v, w) :Zvi*wi

i=1

By fixing v, f,(w) = (v,w) is a linear combination on the coordinates of w,

thus f, is a linear transformation. Similarly, f,,(v) = (v, w) is also a linear

transformation. On the other hand, let f(w;, wy, w3) = 2% wy + 3 % wy + 5 * w;

a linear combination. The application f can be seen as the scalar product of

(2,3,5) and (wy, ws, ws). Therefore, f can be assimilated to the vector (2, 3, 5).

From now on, vectors will be written as a line (v, ..., v,,) when they represent
w1y

linear transformations, while they will be written as a column ... |, or
W,

(w, ..., w,)", when they denote elements of K".

Linear transformations are not restricted to transform a vector into a scalar.
For example, g(z,y, 2) = (x+y,y+ 2, 2+) is a valid linear transformation as
it verifies the canonical properties of linear transformations with the vector
addition and scalar multiplication. To extend the vectorial notation of linear
transformations for multi-dimensional images, the concept of matrices is nec-
essary. Matrices are vector arrays generalizing the notation of linear transfor-
mations defined by scalar product. Let us study the example of g. The line
vector associating (z,y, z) tox+yis (1,1,0),as ((1,1,0), (z,y, 2)) = z+y. Sim-
ilarly, (0,1,1) and (1,0, 1) represent the two next coordinates of g. Therefore,

14 Chapter 2. Mathematical definitions of program verification

the matrix associated to g is

_ o =
O = =
_ = O

Every linear transformation f : K™ +— K" admits a matrix representation
M € M,,,(K), where M,,,(K) is the set of matrices of m columns and
n lines. The notation of the set M,,,, of square matrices is simplified into
M,,. By extension, linear transformations f : K" — K" will be refered to as
square transformations as they admit a square matrix. In general, every no-
tation defined for matrices is valid for linear transformations. For a matrix
M, M; ; represents the j' coefficient of M; the i'" line of M. Every matrix
M € M, »(K) admits a transpose M* € M,, ,,, defined as a substitution of its
coefficients: M;; = M; ;. The addition operator + of K is extended to matrices
of same size, as it was extended to vectors, by applying it coordinatewise. In
other words for two matrices M and N of same size, (M + N); ; = M, ; + N, ;.
Matrix multiplication extends the scalar multiplication * for M € M, ,, and
N € M, ,, which returns M+« N € M,,,. Itis defined using the scalar product
of Definition 1 as follows:

(M % N)ij = (M;, N})

As vectors can be seen as matrices with one line and n columns or one column
and n lines, they also can be multiplied by matrices with respectively n lines
or n columns. We denote o the usual composition operator. The main interest
of vector/matrix multiplication is to easily apply input vectors and compose
linear applications, as the result of matrix multiplication is the matrix repre-
senting the composition of the two linear transformations associated to the
initial matrices. In other words, if a linear transformation f is represented by
the matrix My, g by M, and v is a vector, then M; x v = f(v) and My * M,
represents f o g the composition of f and g.

The kernel of a linear transformation f, denoted ker(f), is the vector space
defined as ker(f) = {z|z € K", f(x) = 0}. The same notation is used for ma-
trices representing a linear transformation.

A square transformation f is said to be invertible if there exists a linear
transformation ¢ such that f o g = g o f = Id the identity transformation,
and ¢ will be denoted f~!. The successive application of f n times will be
denoted f" and its associated matrix is M} where M} is associated to f. If
there exists n such that f" = 0, then f will be said nilpotent.

As matrices are vector arrays, the concept of determinant is extendable to
linear transformations. Particularily, we have that a linear transformation is
invertible iff it has a non null determinant. Also, the determinant of f equals
the determinant of f*. It is also equal to the inverse of the determinant of f~*
if f is invertible.

2.1. Linear algebra 15

2.1.3 Duals and orthogonal space

Let f alinear transformation associated to a matrix M;. f admits a dual trans-
formation f* : (K — K) — (K — K) defined as:

Vo, [(o) =¢'o f

where ¢ is a column vector. The dual of the dual of f is f, or in other words
(f*)* = f. The matrix associated to f* is M.

Let E be a K vector space, F' C E a sub vector space of ' and x an element
of F. A vector y is orthogonal to z if (z,y) = 0. We denote F'* the set of vectors
orthogonal to every element of . The orthogonal of the orthogonal of a
vectorial space V is V, or (V+)= = V. The concept of dual and orthogonal
spaces are deeply connected. In particular, they verify the following lemma:

Lemma 1 Let K be a field, E be a K vectorial space, F' a sub-K vectorial space of E
and f : E — E a linear application.
f(F)C F& f*(F+) cF*

Proof. By definition we have (f(z),2') = (z, f*(2)). Letx € F,2' € F*. If
f(F) C F,then (f(z),2') = 0, thus (z, f*(z')). As we have f*(F*) Cc F'*, we

Xz
conclude by using the fact that (F+)* = Fand (f*)* = f. O

2.1.4 Eigenvalues and eigenvectors

The ring of polynomials K[X] is the set of all polynomials with coefficients
in K. In other words, K[X] = Vectg ({1, X, X2, ...}). We note K the algebraic
closure of K, K = {z : 3P € K[X], P(x) = 0}. Every square matrix A is associ-
ated to a characteristic polynomial P € K[X| such that P(X) = det(A—X.Id).
Roots A € K of this polynomial are called eigenvalues. Their associated
eigenspace E), defined as E\ = ker(A — AId), where Id is the identity matrix
and E) # {0}. The multiplicity of an eigenvalue is its multiplicity as a root of
the characterlstlc polynomial (i.e. A has a multiplicity m if == A))m € K[X]and
(Xﬂ\)mﬂ ¢ K[X]). An eigenvector of f* is denoted a left-eigenvector of f. The
left adjective is similarly generalized to eigenspaces (but not to eigenvalues,
as f and f* have the same eigenvalues). Generalized (left-)eigenspaces ex-
tend the previous concept and are defined as EY} = ker((A — AId)"). A vector
¢ is a generalized eigenvector of order nif o € Ef and ¢ ¢ E} ™.

2.1.5 Properties of the determinant

The determinant has useful properties that will be used through this thesis.

o If all the coefficients of a matrix belong to a ring R, then its determinant
belongs to R. This comes from the determinant formula that involves
only multiplication and additions of coefficients of the matrix.

16 Chapter 2. Mathematical definitions of program verification

e The product of all eigenvalues to their multiplicity equals the determi-
nant. This comes from the fact that eigenvalues are root of the charac-
teristic polynomial. If Ay, ..., A, are roots of P, then we can write P as
(A1 — X)...(\, — X). Hence,

det(A) = P(0) = 1.\,

Therefore, the product of all eigenvalues of a linear transformation belong
to the ring in which its coefficients belong. This is also true when eigenvalues
do not belong to this ring: for example the transformation f(z,y) = (v, —)
admits the complex eigenvalues i and —i, while its determinant is 1.

2.1.6 Jordan normal form

The matrix of a linear transformation is expressed in a certain base of a vec-
tor space. So far, every example was implicitly expressed in the canonical
base B of K™ defined as B = {e¢; = (1,0,...,0)",es = (0,1,0,...,0)",....e, =
(0,...,0,1)"}. For example, let f(z,y,2) = (x +y + 2,2 %y + 2,5 * z) a linear
transformation. In the canonical base B = {e; = (1,0,0)", e = (0,1,0),e3 =
(0,0, 1)}, this transformation has the following matrix representation:

1 11
M={0 21
0 05

As we can see, f(e;) = e, therefore the first column correspond to one
time ey, or (1,0,0)". We also have f(e3) = e; +2%es and f(e3) = €1 + €9+ 5*es.
Columns of the matrix are images of the elements of the base in which the
linear transformation is expressed.

It is possible to express linear transformations in a different base than the
canonical base. For example, in the base B’ = {¢} = (1,0,0),¢e5 = (1,1,0),e; =
(1,1,3)}, we have that f(e}) = €}, f(e}) = 2x ¢ and f(e;) = 5 * €}. Hence, in
the base B/, f is defined as fg/(z,y, 2) = (x, 2%y, 5x2) and admits the matricial
representation

Changing the base is a linear operation on vectors, therefore it can be
performed by an invertible linear transformation p. It is sufficient to apply
p~! for returning to the original base.

Definition 2 Two linear mappings f, g are said similar if and only if there exists
an invertible linear transformation p such that f =p~' o gop.

Similarity between transformations has the interesting property to be pre-
served when calculating f". Indeed, f* = p~! o ¢" o p is true for any positive
n by Definition 2.

2.2. Programming model 17

In the case of f and fz/, they are similar with p(z,y,2) = (z,2 + y, 2z +
y + 3 x z). The careful reader will notice that the vectors of 5’ are actually
eigenvectors of f, and the values on the diagonal are exactly eigenvalues of
f. Expressed in this base, f admits a diagonal matrix representation, in the
sense that for all ¢, j such that ¢ # j we have that Mg, ; = 0. More generally,
when a linear transformation is similar to a diagonal transformation, we will
say it is diagonalizable. In any case, every linear transformation is similar
to an upper triangular transformation (i.e. admits a matrix where all the
coefficients below the diagonal are null).

For any linear transformation f, there always exists a base 7 such that f;
is associated to a matrix J defined as follows:

Jp 0 0
g=| 9 -

. -

0 0 J

and

N 1 .0
Ji - 0

N |

0 ... 0 N

for 1 <@ < k where), is an eigenvalue of f. This base is called the Jordan
base of the transformation f, and its expression in this base is called the Jordan
normal form of f.

When a matrix A is diagonalizable, its Jordan normal form J is its diag-
onal form and the columns of the matrix P of the base changing application
(A = P! JP) are exactly eigenvectors. Otherwise, the columns are composed
of specific generalized eigenvectors ¢ of order n that satisty J.o = Ap + ¢,
where v is a generalized eigenvector of order n — 1.

2.2 Programming model

2.2.1 State machines

Computer systems are implementations of much simpler machines, called
transition systems [Wag+06].

Definition 3 Let A a set of symbols called an alphabet. A word of size n on Ais a
sequence (finite or infinite) of n elements of A. A transition system S on A is a tuple
(L,I,T, F) such that:

o L isa set of locations, or states;
e [C Lisa set of initial states;

e [C Lisaset of final states

18 Chapter 2. Mathematical definitions of program verification

after 40s

after 30s

after 5s

FIGURE 2.1: Finite transition system regulating a traffic light.

o T e L x L is a set of transitions, or edges.

An execution of a transition system is a sequence (finite or infinite) of n states where
foralli <n, (l;,li41) € T.

Two different structures are derivable from transition systems.

e Automatons are transition systems where edges are labeled with el-
ements of the alphabet. In other words, 7' = L x A x L. A word
W = wiws...w, of size n belong to the language of the automaton iff
there exists an execution m = mms...m, of A of same size such that for
all i, (mwmiﬂ) € T and Tn € F.

e Kripke structures are transition systems where locations are labeled
with elements of the alphabet. In other words, they are extended with
a labeling function n : L — P(A) associating to each state a symbol or a
set of symbols. A word w = wyws...w,, of size n belong to the language
of the Kripke structure iff there exists an execution 7 = mm,...7,, of A of
same size such that for all i, w; € n(m;) and 7, € F.

The language of a transition system S is denoted £(S). As words and ex-
ecutions are closely related, they can be assimilated to each other. Transition
systems are structural representations of a system composed of a given num-
ber of states (potentially infinite) and transitions linking those states. For
example, Figure 2.1 depicts a transition system regulating a traffic light. It
has an initial state, , from which it starts. After 30 seconds the light
turns , 5 seconds later it turns to red, and finally after 40 seconds it
goes back to . Seen as an automaton on the alphabet A = {wait 30s —
wait 5s — wait 40s}, its language would be concatenations of the word wait
30s - wait bs - wait 40s. Seen as a Kripke structure on the alphabet A =
{green, yellow, red}, its language would be concatenations of the word green
- yellow - red When L is finite (respectively infinite), we will say that the tran-
sition system is finite (infinite). Multiple transitions going out of a single

2.2. Programming model 19

state with non-excluding transitions labels (i.e. multiple transitions can be
chosen) implies a non deterministic choice between the different reachable
states. When such construction occurs in a transition system, we say that it is
non-determinisitc.

Turing machines are a specific class of transition systems. They are de-
fined as an infinite set of states L = {/;, : i € Z}, called a tape where there
exists bi-directional transitions between [; and [;,; for all 7 € Z. Each state is
associated to a memory cell, empty at the beginning, in which it can read and
write data. Transitions are provided with conditional rules and rewriting in-
structions. For example, a Turing machine writing the value 101010... can be
defined as follows:

1. If the current state is /,, and [,,_, is empty or contains 0, then write 1 and
g0 to ly41.

2. If the current state is /,, and [,,_; contains 1, then write 0 and go to /,,.

Turing machines allows computing any algorithmic computation, which makes
them a convenient formalism for studying actual computer systems.

2.2.2 Computer systems

Computer systems are basically machines manipulating a memory composed
of different chunks of data. Some chunks can be reserved to receive a specific
value and associated to a name. We refer to these associations as program
variables, or simply variables. A program is based on a set of instructions
that alters variables. These instructions compose a programming language.
Most of the languages used in today’s programs (C, Java, HTML 5 + CSS 3,
...) are Turing-complete, i.e. are as expressive as Turing-machines. The Rice
Theorem [Ric53] states that the class of non-trivial properties are undecid-
able in general for Turing-complete systems. Instead of working on real-life
languages, we will mainly work on a toy language that is Turing-complete so
that the studies of the Part II on this simple language have a meaning for real-
life programs. Part III will then apply these methods on programs written in
the C language.

Let Var the set of variables used by a program. Variables take their value
in a set defined by their type, but to simplify our analysis, we will use R for
all variables. A program state is then a partial mapping Var — R. Any given
program only uses a finite number n of variables, thus program states can
be represented as vectors X = (z1,...,z,)". Finally, we assume that for all
programs, there exists x,,; = 1 a constant variable always equal to 1. This
allows representing any affine assignment by a matrix.

Conditional instructions (loops and conditional paths) are considered non-
deterministic. The expression non_det(exp;, exp,) returns a random value be-
tween the valuation of exp, and exp, when the program reaches this location.
Multiple variables assignments occur simultaneously within a single instruc-
tion. We say an assignment X = exp is affine when exp is an affine combi-
nation of the variables. Also, we say that an instruction is non-deterministic

20 Chapter 2. Mathematical definitions of program verification

exp = cst € K
RE skip | x € Var
() | exp + exp
| (21,..,2,) = (expy, ..., expy,) | exp * exp
| {i} OR {i} | non_det(exp, exp)

| while * do 7 done

FIGURE 2.2: Code syntax

when it is an assignment in which the right value contains the expression
non_det.

For any variable v and any assignment, we denote v’ the new value of v
after the application of the assignment. This notation is extended to vectors
instead of variables and applications instead of instructions in general.

Property 1 This toy language is Turing-complete.

Proof. By [Min67], a finite state machine with at least two counters, in-
structions on transitions manipulating them and one initial state is Turing-
complete. Instructions on these counters are of the formz = axz 4+ B*xy + 7,
where = and y are variables and «, 5 and ~ are coefficients in Z. y also can be
modified by such instructions.

Let I a finite state machine manipulating counters. We will build a pro-
gram with our toy language that simulates F' For each state s of F', we define
a variable v, € {0,1}. The variable v; associated to the unique initial state ¢
is set to 1, the others to 0. We also add a variable for each counter. Then, we
add a loop in which there will be multiple assignments. If there exist a tran-
sition from s to s’, then we add the instruction (v, vy) = (0, vs). If there are
multiple transitions going out of s, then their corresponding instructions are
put is an OR instruction. The counter instruction = a* x + 3 * y + ~ follows
the previous instruction and is written: © = (1 —vy) *x+ vy * (axz+ Bxy+7).

Hence, we built a program that computes F'. [

2.3 Model checking

2.3.1 Models

Program representation as a transition system is part of a larger conception
of formal verification called model-based verification. Let us recall the traffic
light example, a transition system with three states. A program that imple-
ments such a controller must take care of many parameters, like captors or
possible physical breakdowns of the system. The robustness of the system
must be guaranteed in every case. An implementation of a traffic light con-
troller doesn’t need to match precisely the corresponding automaton, but its
states must follow a certain pattern : initially, the program is in a state,

2.3. Model checking 21

then in a and a red state, and finally goes back to a state. In
other words, it must accept a specific language (here, the language is the rep-
etition of green, yellow and red). Hence, it is possible to specify the behavior
of programs with automata. Model based specification is widely used in the
context of verifying programs containing infinite loops. Such programs are
indeed hard to specify with contracts as relations between the input and the
output are irrelevant for non terminating programs.

In concurrent programming, safety, and liveness constrants are expected
to be met, especially in embedded systems. When multiple processes work
on a same ressource, locks can be used to enforce the coherence of modifica-
tions performed by each process. Then, the following examples of require-
ments may need to be met:

e during a given event, the lock must not be taken (safety requirement);

e if an event occurs in the function f, then when f has been called, the
lock was not taken (contextual requirement);

e every function must free the lock before it returns (liveness require-
ment).

While these properties can be represented by automata, it is clearer to ex-
press them as readable sentences. In fact, they can be expressed via temporal
logics.

2.3.2 Temporal logics

Instead of using automata, temporal logics [Pnu77] can be used.
Definition 4 Let AP an alphabet. Operators of Temporal Logics are defined as:
pu=TIpeAP|-plonp| X |pUp

Given a successor function succ : N — N, the satisfaction relation = of a Tempo-
ral Logic formula ¢ by a sequence m = (7;);en where:

m FT

m Ep & pem;

T E - &S mEe

m FoANY & mEepandm EY

T = XSO A T suce(3) = ¥

T = QOUw & W F w Vv <7Ti = (/J) A\ T suce(i) = 90U¢>

Operators V, = and < are defined as usually from the operators — and A.
Temporal logics have been developped as a specification language read-
able intuitively. If the elements of the alphabet are events, the property
(—t) U t' is read as “event t must not occur until event t' occurs”. Hence, a
temporal property defines a language on an alphabet of events.
One of the very first Temporal Logic is the Linear Temporal Logic (or LTL).
It is defined as a Temporal Logic of Definition 4 with succ(i) = i + 1, and its

22 Chapter 2. Mathematical definitions of program verification

language is equivalent to the language accepted by a generic kind of automa-
ton, called Biichi transition system.

Definition 5 A Biichi transition system is a finite automaton (L, 1,6, F') where
F C L a set of accepting states. The language of such a structure is composed
of words for which there exists a finite accepting execution of the automaton or an
infinite execution passing infinitely many times through an accepting state.

2.3.3 Model-checking

Specifying a program with an automaton give a temporality to the property
that we want to check. In other words, it is not a static property that we want
to prove, but a property that evolves over time. Therefore, when the program
performs a step, the automaton must check that this step is consistent with
its own behavior. For example, a traffic light controller program must not go
directly from green state to red state.

In order to prove the correctness of the program with respect to an au-
tomaton, the model-checking algorithm relies on transition system product.

Definition 6 Let A and B two transition systems. C' = A x B is the product of
A and B such that every execution of C' corresponds to an execution of A and B.
States of C' are pairs of states of A and states of B, and initial states (respectively
final states) of C' are pairs (a,b) such that a is an initial state (vesp. a final state) of
A and b an initial state (resp. a final state) of B. There exists a transition from (a, b)
to (¢, d) if A defines a transition from a to c and B defines a transition from b to d.

For example, Figure 2.3 depicts the product between the traffic light con-
troller and a morning-afternoon controller, keeping track of when it is the
morning and when it is the afternoon. The resulting transition system con-
tains every possible state reachable by a traffic light controller that keeps
track of mornings and afternoons.

Instead of checking if the program P verify the specification, a model-
checking procedure tries to find an execution of P that doesn’t verify it. To
do so, two transition systems are necessary:

e a Kripke structure R representing the program, i.e. accepting execu-
tions are effective executions of the program;

e an automaton L that accept every word that doesn’t verify the specifica-
tion.

The product of A and L will be an automaton accepting every effective
execution of the program that doesn’t verify L.

2.3.4 Limitations

This intuition of the model-checking algorithm faces multiple limitations.
Model-checking is in general undecidable for actual programs as many au-
tomata allow specifying the halting problem. Also, a program is often too

2.3. Model checking 23

X
' . Red
Mommg

Afternoon, . Afternoon - Afternoon

FIGURE 2.3: A traffic light controller coupled with a morning-
afternoon controller.

complex to be represented as a finite automaton on a given language. Hence,
a computable model-checking procedure requires to strongly abstract the au-
tomaton representing a program so that it becomes less expressive than a Tur-
ing machine (otherwise it would contradict the Rice theorem) or reduce the
expressivity of the specification languages. In general, the choice is made of
preserving the soundness of the analysis, i.e. if the procedure does not find a
counter-example, then the program is valid (i.e. it verifies the specification).
On the other hand, if a counter-example is found, it does not necessarily indi-
cate that the program is invalid: the counter-example might be spurious. In
that case, techniques like CEGAR [Cla+00] infers information from spurious
counter examples to simplify the product automaton.

Another issue of model-checking of temporal properties comes from the
exponential size of the automaton accepting the same language than a tem-
poral formula. A Biichi automaton has an exponential number of states in
the size of the automaton it is associated to. The transition systems product
and the search of counter examples doesn’t scale in practice

2.3.5 The temporal logic CaRet
Recursive state machines.

Recursive state machines, or RSM, are Kripke structures equivalent to push-
down automata. Intuitively, they are sets of standard transition systems with
multiple initial and final states. Each transition system is granted the right
to call another system of the set. Their shape fits well the inter-procedural

24

Chapter 2. Mathematical definitions of program verification

Module 1 Module 2

FIGURE 2.4: Example of an ARSM and one of its possible exe-
cution (or word).

control flow graph of a program. Figure 2.4 represents an example of RSM.
The nodes ¢ and k are able to call the Module 2 and the nodes j, g, [and m are
return sites.

Definition 7 Let AP a set of atomic propositions and I' an alphabet. A recursive
state machine R over AP is a tuple (M, { R, }men, 1, init), where M is a finite set
of labels.

For each m € M, exist a module

Ry, = (N, B, Yo, Envny Exyy, Cally,, Rety,, 6,)

such that:

N, is a finite set of nodes, each associated to a letter vy € I'.
By, is a finite set of boxes.
Y, : B,, — M associates each box to a module.

En,, and Ex,, are two non-empty subsets of N,, respectively representing
entry and exit nodes of a module.

Call,, = {(b,e)|b € B, e € Eny, 4} and Ret,, = {(b,x)|b € B,,, v €
Exym(b)}

Om © Ny U Ret,, — 2NmUCalln defines transitions between nodes.

When considering the whole automaton, the same notations are kept without
the m index (the set of nodes for the whole RSM is denoted N).

2.3. Model checking 25

e 1: (NUCallURet)x AP — {T, L, *} is a labeling application associating to
each couple (node,atomic proposition) a truth value T if the property is correct,
L if it is not.

e init C N are the initial states of R.
Remark.

Nested words.

The execution path of Figure 2.4 is linear, in the sense that it always goes step
by step toward the same direction. The presence of call and return sites al-
lows to consider executions not as simple words, but as nested words [AMO09].

Definition 8 Let I an alphabet, I'* = T" x {call, ret, int} the extended alphabet
of I'. A nested word is a well parenthesized word with respect to call and ret.

Executions of an RSM (and of an A RSM) can be seen as a nested word (Fig-
ure 2.5) The whole sequence of events is represented as the general path of

I
Abstract! Genera]i Past
SUCCCSSU’ SUCCessol successor

FIGURE 2.5: Execution of the ARSM in Figure 2.4 seen as a
nested word.

the execution, while the sequence of events in a single module is called the ab-
stract path, linking every call to the corresponding ret). Contextual proper-
ties require to have visibility of what happened at the call site of the current
module: this is provided by the past path, linking every step to its associated
call site.

Definition 9 The partial successor applications succ, succt and succ; are defined
such that:

o succd : the linear successor, succd

e succt: the abstract successor, pointing to the next local successor, i.e. succg(i) =
the index of the associated ret if v; is a call, i + 1 otherwise.

e succ, : the past successor, associating v; to the call site of the current module.

When there is no ambiguity on vy, succ} will be denoted as succ® with b € {a, g, —}.

26 Chapter 2. Mathematical definitions of program verification

node |a | b|cldle|f|lg|h
succd | blc|dle|flg|h|L
succ* | blec|lgle|f|L|h]|L
succ” | L | L|Ljc|lc|lc|L]|L

FIGURE 2.6: Results of the application of the successor applica-
tion on each node of the execution example of Figure 2.4

int x=0 ;

void lock(void) { x = 1; }

void unlock(void) { x = 0 ; }

int canAccess(void) { return x == 0; }

FIGURE 2.7: Simple C representation of a lock.

For example, let the word
7 = (a,int), (b, int), (¢, call), (d, int), (e, int), (f, int), (g, ret), (h, int)

depicted in Figure 2.5. The module 2 is called from the module 1 from ¢, and
returns in g. The successors applications succ?, are presented in Figure 2.6.

The CaRet Temporal Logic

Similarly to defining a Temporal Logic for standard words, nested word can
be extended with their own temporal logic using the new successor func-
tions.

Definition 10 Let AP a set of atomic propositions. The Temporal Logic CaRet is
defined by the following operators:

pu=pEAP | ~p|lpAp|oVe| X% | X% | X p|eU% | oU% | U™ ¢

where X and U® for b € {g,a,—} are defined as Temporal Logic operations of
Definition 4 with the successor function succy.

Specification examples. In Section 2.3.1 were presented three possible re-
quirements that would be useful to express with temporal logics. Figure 2.7
depicts a naive implementation of a lock, represented by z. If x is equal to 0
the resource is free, otherwise the resource has been locked.

1. G* (p = x == 0), or when an event p occurs, then the lock must not be
taken. p could be the call of the function lock for example.

2. G9 (p = X~ (x == 0), or when p occurs, the lock was not taken when
the current function was called.

2.4. Invariance and inductivity 27

3. GY9 (F*x == 0), or anytime, the lock must have beed freed before ter-
mination of the current function.

2.4 Invariance and inductivity

2.4.1 Floyd-Hoare axiomatic semantics

In order to prove that an imperative program satisfies a given specification,
the main approach remains the Floyd-Hoare style of axiomatic semantics.
The Floyd-Hoare logic allows to express elegantly the relation between pred-
icates Pre and Post respectivelely before and after the application of a state-
ment S as follows:

{Pre} S {Post}

For example, the Floyd-Hoare triplet {z + y = 0}z =z +1{z+y = 1) is
valid.

2.4.2 Contracts

Symbolic computation is the branch of formal methods that analyses the be-
havior of a program by symbolizing program states by predicates, and prop-
agates these predicates through the control flow graph of the program (i.e. the
transition system with program instructions on its transitions). Reasonning
about the program requires to perform different steps on the programs and
verifying properties along the control flow graph. This is called deductive
verification. In this approach, programs must be annotated with contracts
on their behaviors (relations between input and output) and assertions giv-
ing, once proven, informations on the program at a given point. Even in
model-checking, assertions plays a fundamental role in the construction of
the Kripke structure and more precisely, the definition of the labelling func-
tion 7 supposed to link a program state to the set of properties that are veri-
fied at this state. In particular, loops have to be annotated with loop invariants.

Example of deductive verification with loop invariants The use of invari-
ants is introduced by Floyd [Flo67] and Hoare [Hoa69]. Let us consider the
Euclid’s algorithm of Figure 2.8.

Let us assume this algorithm satisfy the precondition + > 0 and y > 0.
This algorithm must satisfy the post-condition :

Result = ged(zx, y)

where 2,y are natural integers and gcd is the greatest common divisor of a
and b. We can notice that this loop admits multiple invariants:

e >0
e b>10

e ged(a,b) = ged(z,y).

28 Chapter 2. Mathematical definitions of program verification

a = x;
b =y;
while (a != b) do
if (a > b)
a = a-b;
else
b= b - a;
done
Result = a;

FIGURE 2.8: An implementation of the Euclid’s algorithm. The
if and the while conditions appear to match the actual algo-
rithm.

Proving the two first invariants is easy, as a and b are compared before
getting assigned. The third can be proven by induction. It is true at the
first iteration of the loop as a = z and b = y. Assume now that for a given
iteration, the invariant holds. Two cases are possible, either a > b or b > a.
The two possibilities leads to the respective Hoare triplets (gcd(a,b)) a =
a—0b(ged(a—b,b)) and (ged(a, b)) b = b — a (ged(a, b — a)) It is easy to prove
that gcd(a — b,b) = ged(a, b) when a > b, as well as ged(a,b — a) when b > a.
Also, a = b is not possible at the beginning of the loop as it would contradict
the loop condition. Therefore, the invariant ged(a, b) = gcd(z, y) holds. When
the loop ends, gcd(a,b) = gcd(a, a) = a, it naturally comes that a = ged(z, y)
by the last invariant.

2.4.3 Inductivity

Invariants that are preserved by a loop iteration are called inductive invari-
ants. This denomination is significant as not every loop invariant is pre-
served by a loop iteration. Indeed, take for example the loop in Figure 2.9.
In Chapter 5, we will prove that this loop admits the inductive invariant
z? + y* < 2. This invariant directly implies that z € [—v2,v/2] and y €
[—1/2,/2] are also invariants of the loop. These invariants are however not
inductive as if + = V2 and y = /2, then after one loop step we have y =

1.32v2 ¢ [-v2,V2].

2.4.4 The field of invariant generation

The large size of industrial programs make the manual writing of invariants
burdensome, if not humanely impossible. That is why formal tools often rely
on invariant synthesizers to automatically generate loop invariants. Different
approaches have been developed in this direction'.

! Abstract interpretation is not mentioned in this list though it plays a major role in the
invariant generation field. It is treated in the next section.

2.4. Invariance and inductivity 29

(x,y) = (non_det(-1,1),non_det(-1,1));
while (*) do
(x,y) = (0.68 x (x-y), 0.68 x (xty));

done

V2

v2 Y

FIGURE 2.9: Affine loop admitting 2? + y? < 2 as an inductive
invariant (in blue). The yellow square is also an invariant, but
it is not inductive.

Dynamic analysis

The most intuitive manner to check if a program behaves well or not is to
manually check the output of a random execution. Dynamic analysis is the
automation of the analysis of execution paths. LLVM [LA04] (for Low Level
Virtual Machine) has its own dynamic tester, AddressSanitizer [Ser+12] that
detects memory errors. E-ACSL [SKV17], part of the Frama-C [Kir+15] suite,
is based on symbolic and dynamic execution of C programs annotated with
ACSL [Bau+16] predicates. While it guarantees the presence of a bug if the
execution doesn’t validate its expected behavior, dynamic analysis is un-
sound as it can miss a undesired behavior or generate a false invariant due
to the large size of the input set. Proofs of reliability cannot be inferred from
dynamic analysis alone: it has to rely on static analyzers.

Invariant synthesizers also have their dynamic equivalents. The most
widely used is Daikon [Ern+01] that tries to infer likely invariants, i.e. valid
invariants for a large amount of loop iterations and therefore, good invariant
candidates. These candidates must be proven valid afterwards as they may
be valid for every execution tested, but without a full coverage of all possible
executions, there may exists an execution that doesn’t verify the invariant.

Acceleration

Dynamic analysis may be prohibitive due to its general imprecision. It gen-
erates invariants procedurally, in the sense that it is not the loop in itself that

30 Chapter 2. Mathematical definitions of program verification

is analyzed but its behavior with respect to an input. When verification re-
quires a precise study, it may be tempting to guess the exact set of reachable
states, or at least give a controlled over-approximation. In the field of linear
loop invariant generation, acceleration [Bar+05] has shown to provide excel-
lent results in terms of precision. Accelerating techniques are based on linear
algebra properties, taking advantage of finite monoid transformations [GS14]
simple behavior. Finite monoid transformations are affine transformations
on a vector of variables x such that x = Az + b, where bis a vector and A is a
matrix such that there exists m and n such that A™ = A™*". The simple form
of the matrix A allows to get a linear relation between the initial state and the
loop counter. When linear transformations are not in this class, alternatives
involving matrix parametrization [JSS14] are used to over-approximate the
behavior of the transformation.

Direct techniques

Sometimes, a loop has a particular shape that allows mathematical theo-
rems to be directly applied to find an invariant. For example, solvable loops
of [RK07] can be handled with Grébner bases to generate an ideal of polyno-
mial that contains all the invariants of the loop. Other techniques, like Karr’s
algorithm [Kar76] find invariants in simple linear programs given any form
of initial equality relation between variables. This algorithm can be extended
with polynomial invariants with the elevation technique of [MS04].

2.5 Abstract interpretation

Floyd-Hoare triplets are nice formalisms for reasoning on programs, as they
keep track of every possible behavior. In practice, not every piece of infor-
mation is relevant, which leads to bad computation time in generating the
predicates and proving the property. Abstracting predicates is often a good
trade-off between precision and computation time.

2.5.1 Intuition of abstract interpretation

As we saw in the Introduction of this thesis, keeping track of every possible
behavior of a program is necessary to prove its correctness. In static analy-
sis, behaviors are represented as contracts and hints provided by the user to
direct the proof of preconditions and postconditions. Very often, these con-
tracts manipulates relations between variables (in our example, inputs are
positive integers and the output is the gcd of the input). Keeping track of
every relation between variables can be difficult, especially when conditions
occurs as it is then necessary to keep track of each possibility. This would
result in an exponential number of relations in the number of conditions to

keep track of.

2.5. Abstract interpretation 31

It is often sufficient to focus on specific properties of variables. For exam-
ple, arithmetic overflows’ can be detected by analyzing only the intervals in
which the variables evolve.

Abstract interpretation [CC77] is a framework based on the analysis of
specific kind of properties. Instead of computing every possible information,
an abstract interpeter transfers abstract values through the program. These
abstract values represent an abstraction of the concrete program state, or in
other words, a predicate on the state that is verified at a given program point.
An abstract semantic is defined for each instruction so that they also can alter
abstract states (as the concrete semantics of an instruction alters the memory).

2.5.2 Abstract domains

Let P a set of atomic predicates associated to a partial ordering < such that:

e T € P represents a predicate that is always true, and for all v € P we
have thatv < T;

e | € P represents a predicate that is never true, and for all v € P we
have that L < v.

We add to P a join operator, i.e. an operator LI associating to two values
v and w a value z such that z is the smallest value such that v < z and w <
z. (=2,U) defines a lattice. Abstract interpretation is based on two lattices:
the concrete set and the abstract set. These two sets are related by two total
applications that maps one element of a set to an element of the other. The
concretization application v maps an element v* of the abstract set to an element
v of the concrete set, that is v = 7(v*) is a concretization of v*. Similarily, the
abstraction application o maps v to v¥, and v* is an abstraction of v. The couple
(a,) forms a Galois connection of the two lattices, i.e. the following relation
is satisfied:

a(v) v S v =2 y(0)

2.5.3 A semantics on abstract values

The concrete semantics is a function f; mapping an instruction ¢ and a con-
crete value v to the image of v after the application of the instruction i. A
semantics f; is a valid abstraction of f; if for every abstract value v, the con-
cretization of f;(v) is lower or equal (with respect to <) than the concretiza-
tion of f/(v). In other words:

(fioy)(v) 2 (vo fi)(v)

Example. Let us consider the program in Figure 2.11 manipulating three
integers z, y and z. Our goal will be to prove that z € [0, 1] at the end. The

2Values of variables are encoded in a finite number of bytes depending on its type. Over-
flows occur when the result of an operation gets higher than the maximal encodable value
for the type.

32

Chapter 2. Mathematical definitions of program verification

DSw N

] — 00, +00]

FIGURE 2.10: A lattice for the inverval abstract domain. The
partial order can be defined with the inclusion: p < ¢ < p C gq.
We find in this lattice intervals and union of disjoint intervals.

y = [-1,1];
x =y

. OR

. x =y + 1;
.z =Xx-Y;

FIGURE 2.11: Example of a very simple program starting with
the initial state y € [—1, 1].

2.5. Abstract interpretation 33

concrete set V' is defined as P(Z), the concrete semantics is the application of
an assignment on the left term. The semantics for the condition instruction is
defined as the union of the two sets (this is the join operator).

First, let us analyze this program with the interval abstract domain I as
defined in Figure 2.10. The abstract semantics of intervals is defined as the
concrete semantics applied to the bounds of the interval. The classical inter-
val operations are defined as follows:

o [a,0] +c,d] =[a+cb+d
o kxla,bl = [k*a,kxbif k>0, [kx*b,k = a] otherwise
e [a,b] * [c,d] = [min(a*c,axd,bxc,bxd),max(ax*c,axdbxc,bxd).

The abstract semantics on the intervals is easier to compute than the concrete
semantics on sets, as the concrete semantics requires to apply an instruction
on every element of the set where the abstract semantics is only interested in
maximums and minimums.

The program starts with y € {—1,0,1} as a concrete state, which is ab-
stracted by y* = a({-1,0,1}) = [~1,1]. The first instruction is a condi-
tion, which respectively adds the information that 2* = [—1,1] and z* =
[—1,1] + [1,1] = [0, 2]. Therefore at the end of the condition, the union of the
two intervals is performed, which returns z* = [—1, 2]. By the last instruction,
we have that ¥ = [-1,2] — [~1,1] = [~2, 3]. The concretization v(z*) of 2* re-
turns that z € {—2,—1,0, 1,2, 3}. This result is not very precise considering
that 2 can only be equal to 0 or 1. Note however that [0,1] C [-2, 3], hence
the analysis remains sound.

The interval abstract domain is a non-relational domain as it doesn’t keep
track of relations between variables, which was the precision issue on the
example of Figure 2.11. Relational abstract domains like the octagon ab-
stract domain [Min06] allow to keep track of this information, but is generally
slower and harder to implement. In general, properties inferred by abstract
interpretations are over approximations of the set of possible states reachable
at a given program point.

2.54 Loops and widening operators

When an abstract interpreter reaches a loop, it tries to guess an overapprox-
imation of the reachable set of states at the beginning of the loop. In other
words, it will try to compute an invariant of the loop. Loops can be seen as
an undefinite number of conditions. Hence, their treatment require an un-
definite number of applications of the join operator, which is not possible in
general. For example, let us consider the loop starting at = 0 and applying
r = x+ 1 until z # N, with N an integer. The interval abstract domain as we
defined it will start with z& = [0, 0], then after one loop iteration =} = [0, 1],
then % = [0,2], etc.. If the value of N is positive, then it is possible to find
after some applications of the join operator to find an inductive abstract value
overapproximating as well as possible the program state. This abstract value
is called the smallest fixed point. However, if N is negative, the smallest fixed

34 Chapter 2. Mathematical definitions of program verification

point would here be zf_ = [0, +co[. There exists an infinite number of ab-
stract value between [0, 1] and 2f_, therefore the analysis will not stop. One
possibility to solve this issue is to use a widening operator.

Widening operators V are similar to the join operator LI for a lattice L,
except that they work on a different lattice L’ with the order <;,. There must
be in this new lattice no strictly growing infinite chain with respect to <. In
other words, the widening operator will always be called a finite number of
time as there exists a finite number of elements before reaching T. For the
interval abstract domain, <;, can be defined as follows:

e L = 0

o | —00,+oo[2y T

e Va,b: [a,b] <1 [a,+00] Xp | — 00, 400]
o Va,b:la,b] =p|—o00,b =5]—o00,+00]

With this new lattice, increasing an upper bound automatically sets it to +o00
and decreasing a lower bound sets it to — oo Applying the widening operator
on 2% = [0,1] and 2% = [0,2] results in 2%, = 2!V} = [0, +00], which is here
the smallest fixed point.

The widening operator doesn’t always® return the smallest fixed point.
If N had been calculated by the program in Figure 2.11, as z, the abstract
interpretor would also conclude with z%, = [0, +-00[as it would consider N
to be possibly negative. The smallest fixed point would be in this case [0, 1],

which is included in 2%

2.5.5 A widely used framework

Since [CC77], abstract interpretation became a more and more influent ac-
tor of the formal verification field. Its genericity allows to define one’s own
abstract domain dedicated to the proof of very specific properties.

Abstract domains. The following list is a non-exhaustive list of different
abstract domains that are used in modern abstract interpreters.

o The octagon abstract domain [Min06] keeps track of relations of the form
+2 + y < k, where z and y are variables of the program. This ab-
stract domain have shown to be faster than the polyhedra abstract do-
main [CH78] that expresses general linear inequalities over the vari-
ables of a program.

o The ellipsoid abstract domain [Rou+12] propagates constraints as polyno-
mials of degree 2. It has shown to efficiently approximate the behavior
of convergent linear filters*. However, they sometimes fail to catch pre-
cise properties while domains approximating ellipsoids tend to be faster
and more precise.

3In practice, almost never.
“We will study convergent lienar filters in details in Chapter 4.

2.5. Abstract interpretation 35

o The zonotope abstract domain [GGP09] is based on a quantified represen-
tation of the possible values of variables. Each variable is associated
to a sum of the form «ay + > a;e; where «; are coefficients defining the

=1
zonotope and ¢; are parameters that belong to [—1, 1]. Zonotopes are

convex symetric polyheadra, hence they approximate elliposids quite
well.

o The gauge abstract domain [Ven12] is based on the discovering of linear
inequalities on linear programs. The representation of variables is simi-
lar to the zonotope representation, except the parameters do not belong
to a fixed interval but are counters evolving in N.

o The relational shape abstract domain [ILR17] is based on the discovery of
relational properties over the memory manipulation of a program.

e Some approaches are directly inspired from abstract interpretation. For
example in [MBR16], the initial state is divided in multiple subsets ab-
stracted in a given domain. The inductivity of each subset is tested: if it
is inductive, it is conserved in the final invariant; otherwise it is divided
again, etc.

Abstract interpreters. The Frama-C framework [Kir+15] implements a plug-
in, EVA [BBY17], that uses different domains provided by APRON abstract
domain library [JM09] for the analysis of C programs. Polyspace [Deu03] is
an abstract interpretation tool that have been initially developped as a pro-
totype automatically detecting the Ariane 5 bug [Lan97] and which is now
designed to analyze C and C++ source code. Fluctuat [Gou13] uses the zono-
tope abstract domain [GPV12] that handles floating point operations and ap-
proximations. Java also has its own abstract interpreter, the Julia Static Ana-
lyzer for Java [Spo82].

Part 11

Polynomial invariants for
polynomial loops

37

39

Chapter 3

Polynomial loops don’t exist

Contents
3.1 Elevation of linear transformations 40
3.1.1 Principle of the linearization 40
3.1.2 Linearization 42
3.1.3 Linearizable and exponential 42
3.2 Linearization, 43
321 Intuition 43
3.2.2 Linearizationtheorem 43
33 Algorithm 47
3.3.1 Solvabilitytest 48
3.3.2 Linearization 51
3.4 Properties of elevated matrices 52
34.1 Elevationmatrix 52
3.4.2 Eigenvector decompositionof Wy(A). 52
3.5 Application to formal verification 55

Requirements: Linear algebra (Section 2.1)

The role of a loop statement is to compute a certain amount of time, pos-
sibly infinite, the same transformation. Expressing the exact transformation
performed by the whole loop is as hard as determining the number of itera-
tions n, in the sense that knowing n allows to unfold the loop and determin-
ing the exact operation described by the loop statement. When n is infinite,
verification problems are to guessing whether if a given state is reachable
in a finite but arbitrary number of steps [KL80] or not. Determining either
n is undecidable in general, that is why the study of loops is a challenge in
program analysis.

Consider a polynomial transformation f of degree d. As such, f belong
to one of the following categories:

e /™ is exponential in n, for example if f(z) = 2> we have f"(x) = z*".

e /™ is polynomial in n, for example if f(z,y) = (z + y*,y + 1) we have
f(x,y) = (z + (y+n—1)(y+g)(2(y+n)—1)’y +n).

40 Chapter 3. Polynomial loops don’t exist

one = 1;
yz2 =y * y;
while(...){ while(...){
X=x+tyx*xy; X = x + y2;
y2 = y2 + 2xy + one;
y=y+t 1 y =y + one;

} }

FIGURE 3.1: Example of polynomial loop and its linear equiva-
lent

Let’s focus on the second example f(z,y) = (z + y?,y + 1) in Figure 3.1.
This transformation contains a polynomial expression, y*. The value of y?
after one iteration of fis (y +1)? = y* + 2y + 1, which is a linear combination
of y?, y and 1. If we add variables y, and 1 respectively initialized to y* and
1, then g(z,y,y2,1) = (x + yo,y + 1,42 + 2y + 1, 1) is a linear transformation
that computes the same result than f.

The purpose of this chapter is to correlate the property of " to be a poly-
nomial in n and the existence of a linear transformation g computing the exact
same image given some preconditions over the initialization on the variables
used by g. Section 3.1 formalizes elevation, a technique used for representing
the evolution of monomials of variables transformed by an affine transfor-
mation without using polynomial expressions. Elevation can be applied to
a certain class of polynomial transformations, known as solvable transforma-
tions. Section 3.2 defines the concept of linearization, allowing the representa-
tion of solvable transformations as linear transformations, like in Figure 3.1.
It also proves the equivalence between the solvable transformation and the
linearizable transformation classes. Section 3.3 introduces two algorithms.
The first presents a quadratic test of the linearizability of a given polynomial
transformation f. The second computes the linear transformation g that has
the same image as f. Finally, Section 3.4 studies the eigenvector and eigen-
vector decomposition of an elevated transformation. This chapter is partially
based on work that has been presented in [OBP16].

3.1 Elevation of linear transformations

3.1.1 Principle of the linearization

Linearization relies on the following observation: if some variables evolves
affinely, any monomial composed of those variables also evolves affinely. For
example, let g(z,y) = (242, y+x). The value of 22, denoted (z?)’, after one ap-
plication of g is (z+2)? = z*+4x+4, which is an affine combination of z? and x
Also, (y?) = (y+2)* = y?+2xy+2? and (zy)’ = zy+x*+2y+27 are affine com-
binations of 22, y?, zy, x and y. Finally, it is possible to replace the affine con-
stants by a variable 1, which remains constant. As a result, the linear mapping
flx,y,za, 2y, 92, 1) = (2 4+2.1, y+x, xo+4x+4dzy+ 29+ 2y + 22, Yo+ 20y +x2, 1)

3.1. Elevation of linear transformations 41

X' 2 -Y' 9 Z:

A \
.

\,

N

>

~. ‘

\\\

\

~.
~.
N
~.
~.

o
'®)

~—o. —

-

FIGURE 3.2: The elevation principle is closely related to the lin-
ear algebra notion of similarity. Changing the base X to the base
Y is reversible before and after any number of application of the
similar linear transformations f and g, i.e. for which there exists
a linear invertible transformation P such that g = P! o fo P.

computes the same image as g, extended by the initial monomials value (Fig-
ure 3.2) where x5, yo and xy respectively encode the monomials 22, y? and zy.
This technique is commonly used to generate polynomial invariants with a
linear invariant inference algorithm, as for example in [MS04] using Karr’s
invariant inference algorithm [Kar76] for affine programs. We claim that ev-
ery linear transformation g manipulating a vector of variables X can be el-
evated to express the behavior of any monomial of variables of X. In other

words:

Property 2 For every linear transformation g : Q" — Q™ and every polynomial
P € (Q[X]™), there exists a polynomial Q) and a linear transformation f such that

(f o Q)(X) = (Pog)(X)

Proof. Let X = (xy,...,2,) a vector of variables and m = [] z* any mono-
i=1

mial of degree d of those variables. The value of m/, according to g, is

n

[,)7

i=1

which is a polynomial of degree d. It can then be expressed as a linear com-
bination of monomials of degree d or lower. As this is true for any monomial
of any degree, they all are linear combinations of monomials of degree d or
lower. As such, the image of a monomials sum, i.e. a polynomial, is a poly-
nomial of lower or equal degree. By setting () the polynomial computing the
required monomials to express m/, Pog can be expressed as a linear combina-
tion of monomials, whose new values are linear combinations of monomials.

42 Chapter 3. Polynomial loops don’t exist

3.1.2 Linearization

The elevation principle can be extended to polynomial transformations. As-
sume a monomial appears in a transformation, and that every variable of this
monomial evolves affinely. By Property 2, it is possible to replace this mono-
mial by a new variable evolving linearly. By extension, it is then possible to
replace a polynomial mapping by a linear mapping.

Definition 11 g is linearizable if there exists two polynomials P and () such that
Q) o P = Id and a linear mapping f such that for all X

9(X) = (Qo f o P)(X) (3.1)

Linearizability, just like elevation, is similar to changing the base of a
given linear transformation, with the difference that the new base extends
the old one by polynomial expressions on new dimensions (Figure 3.2). Note
that we also have that ¢"(X) = (Q o f* o P)(X) foranyn € Nas Qo P = Id.
In order to have this identity, it is possible to define P as a transformation
performing, among other, the identity on each variables, and as () the pro-
jection on the initial variables. For example, P(z,y) = (z,y, 2% z.y,y?) and

Qz,y, x2, 2y, y2) = (z,y) verify Q o P = Id.

Example 1. Let gi(z,y,2) = (z + 2,y + 2%, 2 + 3?) a polynomial mapping.
The only monomials appearing in g; are 2? and y>. As x evolves linearly,
it is possible to express the value of (z?) = 2? 4+ 4z + 4. Given the right
initial value of z?, the mapping f(z,y,22) = (z + 2,y + 29, 22 + 4z + 4) is an
affine transformation that computes the value of y’ with respect to g;. In this
case it is also possible to linearize (y*)’ = y? + 2z%y + z*, as z* and 2%y also
are linearizable by expressing z* and zy. To precisely match Definition 11,
P(.CL', y) = (%, Y, $27 .1'3, :L’4, rY, $2y7 y2) and Q(Q:a Y, T2, T3, Lg, LY, L2Y, y2> = (l‘, y)

Example 2. Let go(x) = 2% There is only one monomial, 2%, whose next
value according to g, is (2%)? = 2*. This new monomial has a higher degree
and is directly dependent on z. This transformation is actually not lineariz-
able, which could have been guessed from the beginning. Indeed, for any
initial value of x > 1, its evolution through multiple executions of g, is expo-
nential in the variable = (2,4, 16,256, ...). There exists no affine transforma-
tion that can perform such a calculation.

3.1.3 Linearizable and exponential

There exist two different types of polynomial transformations. First, lineariz-
able transformations like g; admit a polynomial behavior that can be simu-
lated by an affine mapping. Next, non-linearizable transformations like g,
allow an exponential growth that linear algebra cannot handle. The first class
admits multiple types of transformations as we saw in Example 1:

e affine transformations (in the Example 1, z);

3.2. Linearization 43

o poly)nornial transformations depending on affine variables (y depends
on z);

e polynomial transformations depending on linearizable variables (z de-
pends on y).

There exists a class of polynomial transformations introduced in [RK07]
that are known to be linearizable, namely solvable mappings.

Definition 12 Let g € K[X]™ be a polynomial mapping. g is solvable if there exists
a partition of X into sub-vectors of variables wy, ..., wy such that Vj, 1 < j < k we
have

Ju; (X) = Mjw’ + Pj(wy, ..., w;_1)
with (M;)1<i<i a matrix family and (P,)1<;<x, a family of polynomial mappings.

Section 3.2 will detail the link between solvable mappings and lineariz-
ability.

3.2 Linearization

3.2.1 Intuition

Linearization is inspired from Carleman linearization [KS91] that is used in
the field of differential equations. Linearizing transformations requires to
linearize successively each subset of the partition. w, is already affine, each
variable of wy have in their expressions linear combinations of variables of
wy and monomials of wy. Thus they can be linearized, and so does w3 for the
same reason, etc.

3.2.2 Linearization theorem
This section is dedicated to the proof of the following theorem:

Theorem 1 Let g be a polynomial transformation. g is solvable < g is linearizable

Solvable mappings are linearizable

Let g € Q[X]™ be a solvable polynomial mapping. There exists a partition of
variables X = w; U ... U w;, such that

gwj(X> B M]’ZUJT + Pj(wl, ...,w]'_l)

We will prove that g is linearizable, i.e. there exists f, P and () such that
Qo foP = gwithQoP = Id. Let us take P the polynomial computing every
monomial of variables of X and () the projection on the initial variables (i.e.
the monomials of degree 1). The idea is to prove that the image of every
monomial described by P evolves linearly. We proceed by induction on the
size k of the partition of the variables of g. We can state that :

44 Chapter 3. Polynomial loops don’t exist

o Ifk =1, X = wy, then g,,(X) = Myw! + P, where P, is a constant.
Then it is clear that g,, is an affine transformation.

e Assume we can compute a linear application f from g such that g(X) =
Q) o f o P(X) if there exists a partition of k sets of variables satisfying
the solvable hypothesis. Let i be a solvable polynomial mapping for
which there exists a partition of X into k£ + 1 subvectors of variables
X =w W...Wwgpr,w; Nw; = 0 if i # j. By induction hypothesis, we
can linearize h,,, for 1 < i < k. Now, the key point is to find a way to
linearize

hwk+1(x> = Mk+1wg+1 + Pk+1(w17 o wk)
First, let’s note that no variable of w1 have been used in any other h;.
Letv = [[v} a product of variables in (w; U ... U wy). It can appear in
i=0
P as v?, where d in an integer. We know, by induction hypothesis, that
the evolution of v; following the h transformation can be expressed as
a linear application f with the help of extra variables.

We can then use Property 2, stating that there exists () and f such that
(f o @Q)(X) = g(X) (here, g is a polynomial). Let) the polynomial
computing all the monomials of variables of w; up to the maximal de-
gree of a monomial appearing in the expression of w,. Expressions of
variables of w, are now linear as all monomials are now replaced by
new variables introduced by @). By induction, let g can similarly be lin-
earized up to w,_;. The same argument as for w, can be used by using
the partitionning w] = w; W ... W w,,_ (linearized variables) and w} = w,
(polynomials of newly linear variables).

OJ

Non-solvable mappings are not linearizable.

Example 2 presented the non-linearizable transformation g»(z) = z2. Let us
take a similar example g3(z,y) = (y,2?). g3 is not solvable, but no variable
directly polynomially depend on itself. However the next value of the mono-
mial zy is x.zy, a polynomial of zy.

There exists a link between the polynomial self dependency of variables
(or monomials) and the non-linearizability, which was not the case in Exam-
ple 1. Let us formally define dependency as follows:

Definition 13 Let g € (K[X])™ m polynomial mappings. Let x,y two variables
(possibly equal). We define the dependency operators <t and <tsuch that:
e 1qy < yappearsin the expression of 2/ (depends on)
e r <y < yismultiplied by at least one
variable in the expression of ' (polynomially depends on)
By extension, a monomial of variables m = [[vP* linearly or polynomially de-
pend on variables or monomial of variables, by considering m’ = [] g, (X)P
Note that r <y = x<y

3.2. Linearization 45

Remark. Consider that x<ty when y appears in the expression of f(X)|, and
r <y when y appears in a monomial of degree d > 1 in the expression of
f(X)},. In the case of the Example 1, the dependencies of y can be expressed
as (y<y) and (y <), while dependencies of x is z<tz and dependencies of z
are (2<(z) and (z <€y).

For the Example 2, it is clear that = <x.

Property 3 Let g a polynomial transformation. If there exists a monomial of vari-
ables m such that m <<m, then g is not linearizable.

Proof. Letm a monomial of variables. If m <m, then m appears in a mono-
mial m * n with n a monomial of degree at least 1 in the expression of m’
of the new value of m after one application of g. The new value of m.n
will depend on m.n?, that will depend on m.n?, etc. Assume that g is lin-
earizable, i.e. there exist two polynomials P, () and a linear application f
such that ¢(X) = (Q o f o P)(X). P is a finite polynomial. By definition,
m depend on m.n, thus f is necessarily able to compute the image of m.n
(m" = mmn+ ... = mn =m' — ..). Similarly, it necessarily must be able to
compute the image of m.n* for any k € N. With the finite information given
by P, can the finite linear application f express every monomial m.n* ? If
so, there would exist then an expression of ¢ x m.n* forall c € Kand k € N.
Then, we would be able to express z.()_ %) = z.¢™ as a linear transforma-
ieN

tion. As e™ is not linear in m, this is clearly absurd. Thus, there exist no linear
application capable of representing g if m <m.

This property immediately allows concluding on the non-linearizability
of g, in Example 2. The key of the proof is to extract a monomial that neces-
sarily will depend on itself

Definition 14 A set of variables vy, ..., v, is a dependency chain if V1 < i <
n,v;<W;q1. It is said polynomial if there exists a polynomial dependency in the
chain, otherwise it is said linear. In any case, we say that v, eventually depends
on v,. A dependency cycle is a chain verifying v,,<tv;. If the cycle contains a poly-
nomial dependency, we speak of a polynomial dependency cycle. Note that in that
case, if we have v; <v;41, then viyq, ..., vy, V1, v; is also a polynomial dependency cy-
cle, with a polynomial dependency between the last and first element: by convention,
we will assume in the following that all such cycles are written that way.

A difference between g, in Example 1 and g, in Example 2 is the existence
of a dependency cycle with one polynomial dependency in the second case,
while the first one only has linear dependency cycles. This observation can
be generalized for solvable transformations:

Property 4 ¢ is solvable < there exists no polynomial dependency cycle

Proof.

46

Chapter 3. Polynomial loops don’t exist

e If ¢ is solvable, then by definition there exists a partition wy, ..., w,, of

variables such that
gwj(.ﬁl}') = M]U}; + Pj(U}l, ...,wj,l)

Assume there exists a polynomial dependency cycle vy, ..., v,,, with v,,, €
Wyy. As vy, <vy, we have v; € wy, with k < m' by definition of solvable
transformations. Also, as Vi,v;,_;<<v;, we have that v,,_; € wy with
k' < k < m/. Variables of wy cannot depend on variables of w,,, so
Um—1 cannot depend on v,,, which is a contradiction. Thus, there exists
no polynomial dependency cycle.

If there exists no polynomial dependency cycles for a given transforma-
tion g, we will build by recurrence a partition of variables showing that
g is solvable. First, we need the following lemma to simplify the proof.

Lemma 2 Let V a finite variable set. If for any variable v € V there exists
a chain C = vy, ..., v, with vy = v containing a polynomial dependency, then
there exists a polynomial dependency cyclein V.

Proof. Because there is a finite number of variables, it is possible to
show the existence of a cycle. Starting with v = v;, we build the chain C
up to v; such that v;_; <v;. Then, we build C; from v; which eventually
polynomially depends on another variable v;. If by building C = Cy —
Ci — we get to a variable z € C, then there would exist a polynomial
dependency cycle. As there is a finite number of variables and C grows,
C eventually reaches a visited variable.

The initial set w; is characterized by two properties: variables evolve
linearly and only depend on themselves.

1. First, there necessarily exist variables that evolve linearly. Oth-
erwise, every variable v would polynomially depend on another
variable. In other words, any variable v would start a polynomial
dependency chain, which by lemma 2 implies the existence of a
polynomial dependency cycle.

2. Let L the set of variables evolving linearly. To build w;, we also
need to show that there exists a subset of L that only depends on
itself, i.e. any variable ¢ € L linearly depends on variables of L.
Assume that any variable z € L belongs to an affine dependency
chain C ending with y and such that y ¢ L. In other words, z even-
tually depends on y, which polynomially depends on another vari-
able. Thus elements of L all start a polynomial dependency chain,
inducing by lemma 2 the existence of a polynomial dependency
cycle which is absurd. There exists thus a set of variables w; C L
depending only on themselves.

3.3. Algorithm 47

Assume now g is solvable from w; to w; (i.e. satisfies the properties of
a solvable mapping up to j) and that there are still variables not in w;
with 1 < 7 < j. We will show that the set of variables polynomially
depending on wy, ..., w; and that linearly depends on themselves is not
empty. Let W = (w; U ... Uw;), W = X\W the variables not in W
(W # (@) and letv € W.

1. Assume now any variable v € I polynomially depend on a vari-
able of W or start a polynomial dependency chain in 1. Then by
lemma 2 there would exist a cycle, which is absurd. Thus, there ex-
ists variables of W that that do not polynomially depend on vari-
ables of .

2. Let P C W the set of variables that do not polynomially depends
on variables of W. We have to show that there exists a non empty
P" C P such that for any p € P, p linearly depend only on vari-
ables of P"UW and polynomially on variables of V. Assume there
exists no cycles and that for any variable p € P, p belongs to a lin-
ear dependency chain C ending with ¢ ¢ P U W. By construction
of P, ¢ polynomially depends on at least one variable of W (other-
wise ¢ would be in P). Any variable v of W\ P polynomially de-
pends on variables of W by definition. Thus, for any variable of W
there exists a polynomial dependency chain of variables, which by
lemma 2 implies the existence of a polynomial dependency cycle.
This is absurd, thus there exists at least one variable p that admit
no dependency chain ending with a variable out of P U W. Let P’
the set of such variables. Every variable v of this set polynomially
depends on variables of W, and linearly depends on variables of
P that admits no dependency chain out of P U W. In other words,
v depends on variables of P U W only. We conclude this proof by
setting w; 1, = P'.

As there exist only a finite number of variables, eventually we will have
W=0

O

Completeness theorem. We can now prove Theorem 1, stating that any
non-solvable transformation cannot be linearized. Let g be a non solvable
transformation. By Property 4, there exists then a polynomial dependency
cycle C = (vq, ..., v,,). Let m = vy * vy * ... ¥ v, the monomial of all the variables
of C. With respect to g, the new value of m = vy * v * ... ¥ v, would then
polynomially depend on vy * ... * v, * v; = m. By Property 3, ¢ is then not
linearizable.

3.3 Algorithm

There are two aspects of the problem : detecting whether a transformation f
is solvable or not and linearize f if possible.

48 Chapter 3. Polynomial loops don’t exist

Ty, = w1 —2xy+ 3x3 —4xy
/
Ty = I+ To+ T3
/ / / ! 2 1 2 344
r1,X9,T3,Ly) = (X7,L9,Lq, T
f(1, 42,43, 4) (1542543y 4)7 $f3 = Qx5 — 1y
xry = 2w3+ x4

2
()

5

FIGURE 3.3: Dependency graph of the transformation

3.3.1 Solvability test

This first aspect can be reduced to finding cycles in a directed graph, with the
slight variation of constraining the type of transition that must be taken along
the way. This graph will contain a node for each variable of the transfor-
mation and transitions representing the dependency type between variables.
There exist thus two types of transitions : linear dependency transitions and
polynomial dependency transitions.

Definition 15 Let g be a polynomial transformation. Its dependency graph G =
(V. E) is a directed graph defined as follows.

o V is the set of vertices labeled by each variable of g
o £ = E,U E, the set of edges such that

o (z,y) € B & xqy
o (r,y) € E, &y

Figure 6.1 illustrates such a graph for the transformation f. Transitions
(w2, 23) and (z2, z4) represent polynomial dependency transitions. There is
no cycle in this graph going through a polynomial dependency transition,
thus this mapping is solvable.

Detecting such cycles can be checked by a linear time algorithm (cf. Fig-
ure 3.4) and in the same time generate the variable partitioning. The function
color_dfs searches for non trivial cycles in the graph. If the cycle contains
polynomial edges, it returns L. If there is no cycle, it changes the color of the
visited nodes and returns (). Later, if dfs enters a colored node it can guess
whether it is a cycle or an already visited branch, making each node visited
only once. The function merge merges nodes of a linear dependency cycle in a

3.3. Algorithm 49

Require:g: a polynomial mapping
Ensure:a partitioning of variables if g is solvable or L if it is not solvable

(V, E) = dep_graph(g)
forallv € V do
w = color_dfs(v, (V, E))
if w# 1 then
merge(w)
else
return L
end if
end for

FIGURE 3.4: Solvability checking and partitioning.

Require:v a node, (V, E) a graph, path the current path
Ensure:a linear cycle of variables w or L if there exists a polynomial
cycle
vV =w
path = ()
if v’ is colored then
cycle = get_cycle(path)
if path has a polynomial edge then
return |
else
return cycle
end if
else
color(v’)
for all n € next(v') do
cycle = color_dfs(n, (V, E), path U {v'})
if cycle = 1 then
return |
else
if cycle # () then
return cycle
end if
end if
end for
return ()
end if

FIGURE 3.5: Recursive version of the color_dfs algorithm.

50 Chapter 3. Polynomial loops don’t exist

single node. Transitions going in and out of any of the node merged are given
to the new node. Finally, it deletes nodes of the cycle. When the loop ends,

Require:w a node set

Ensure:a merged node n,,

N, = new_node()

forall v € w do
add_succs_and_preds(v, n,,)
delete(v)

end for

FIGURE 3.6: Algorithm of merge.

there is no more cycle on the loop unless the mapping is not solvable. In the
first case, variables of the leaves evolve linearly and only depend on them-
selves : they form the first partitioning set. Their fathers may polynomially
depend on them, but linearly depend on themselves and on no other vari-
ables, they form the second partitioning set. The function partitions applies
this principle by going through the tree and registering each node merged .

Example. On the previous example, applying the algorithm returns the
graph in Figure 3.7. By starting on z;, the dfs detects the linear cycle (21, z2, z1).
It merges the two nodes and continues from the new node z, x2. From there,
it detects the other linear cycle (z3, 24, 23), and merges the two nodes. Par-
titionning is now complete, and it is easy to check this new graph has no
polynomial cycles.

Complexity. Each node and each transition of the dependency graph is
reached at most once during the deep-first search if, when a merge is per-
formed, the dfs starts from the merged node. The complexity of the solvabil-
ity testis O(n + |D|), where n is the number of variables and | D| the number
of dependencies of the tested transformation. At most, every variable is in
relation with every other variable, thus | D| = n?.

e%@) > @

FIGURE 3.7: Result of the partitioning algorithm.

3.3. Algorithm 51

Property 5 The solvability test has a complexity O(n?), where n is the number of
variables.

3.3.2 Linearization

For each monomial m in the transformation, compute the next value of m as a
linear transformation of monomials M, which must be recursively linearized
too. If the mapping is solvable, the set of variables composing monomials

Require:g a solvable mapping
Ensure: f the linearized mapping
f=9
for all monomial m € f do
m =1
for all monomial v? € m do
m' =m'* f(v)?
end for
f.add(m — m’)
end for
for all monomial m € f do
v = new_var(m)
substitute(m,v)
end for

FIGURE 3.8: Linearization algorithm.

of M eventually decreases as polynomial expressions occurring in the trans-
formation uses variables of a smaller set. Thus, linearization always ends.
Once the first loop is over, it is necessary to replace monomials by the new
variables representing monomials. This is the purpose of the second loop,
creating fresh variables for each monomials and substituting them in f to
their corresponding monomials.

Complexity. Only linearizing monomials appearing in the initial transfor-
mation is not sufficient. During the nested loop of the algorithm in Figure 3.8,
new monomials can appear during the computation of m'. For example,
when linearizing f(z,y,2) = (z + v,y + 2%, 2 + 1), 2 needs to be linearized
though it does not appear in f. If we express all monomials of maximal de-
gree d, we need (“1") new variables. For solvable mappings, this degree is in
the worst case a O(d’) where d’ is the product of all degrees. In other words,
the worst case complexity of linearization is O((* "))

Note that this is a strict over-approximation that is never reached in prac-
tice. For the previous example, not all monomials of degree 9 (or less) need
to be linearized (for example, 22 will not appear in the linearized transfor-
mation of f). In the worst case, all variables of w; must be elevated up to d;,

k=1
where d; = [] d.,;, and d,,; the degree of g(X)

j=i

|1Uj :

52 Chapter 3. Polynomial loops don’t exist

Remark about elevation. Elevation is very similar to linearization. It starts
with a linear transformation g and a degree d, then generates the linear trans-
formation f transforming of all monomials of degree d. It is sufficient to
express the monomials new value with respect to g as polynomial transfor-
mations (i.e. P; o g), then replacing each monomial by a brand new variable.
This elevated transformation f requires (') variables.

n

3.4 Properties of elevated matrices

After linearization, the matrix representation of a solvable transformation
has specific properties.

3.4.1 Elevation matrix

Let us define the elevation matrix, i.e. the linear transformation expressing the
new monomials values.

Definition 16 Let X be a vector of variables. We denote U 4(X) the vector of mono-
mials of variables of X of degree d or less. By extension, we define U ,(A) the elevated
linear transformation of A such that U ,(A).U4(X) = Uyu(A.X)

For example, if we have A = < Z cbi) as a transformation for X = (z,y),

we have Uy(X) = (22, 2y, y? z,y) and

a® 2ab > 0 0
ac ad+bc bd 0 0
Uy(A)=| ¢ 2cd d*> 0 0
0 0 0 a b
0 0 0 ¢ d

3.4.2 Eigenvector decomposition of ¥ (A)

U, conserves a lot of very interesting properties of matrices:
Lemma 3

1. ¥, (A.B) = Ui (A). Y (B)

2. Up(A™) =T (A)!

Proof.
1. Wa(A). Uy(B)To(X) = Uy(A).Ug(B.X) = Ug(A.B.X) = Uy(A.B)Ty(X)
2. \I/d(A_l)\I/d(A)\I’d(X) = \Dd(AA—lX) = \I’d(X) SO \I/d(A_l)\I/d(A) = 1Id.

O
The multiplication and inversion of the elevation matrix allows to add the
following property:

Property 6 Let A, B two similar matrices. For any d, U 4(A) and U,(B) are similar.

3.4. Properties of elevated matrices 53

Proof. If A and B are similar, there exists a matrix P such that A = P~'BP.
By Lemma 3, U, (A) = U,(P)~ .Uy (B)¥,(P), therefore V) (A) is similar to
U (B). O
Also, elevation preserves the triangularity of the matrix:

Property 7 If J is upper (or lower) triangular, then V,(.J) is upper (or lower) tri-
angular for any d.

Proof. To understand the proof, let’s see what happens for d = 2and n = 2.

If and)" are eigenvalues of A, then J = (3)lj, > withb = 0or 1. then:
A 2Xb b 0 0
0 AN bXN 0 0
Uy()=| 0 0 A2 0 0
0O 0 0 X b

o 0 0 0 X

As the second variable only depends on itself, its monomials also only
depend on themselves. This is the key of the general proof.

Definition 17 Let f a linear application. We define a dependency order < on
Var a total order such that for all x € Var, f(X) restricted to = depends only on
a linear combination of variables V' for which Yy € V,y <y x. We also say that f
respects <.

The idea behind this is that an upper-triangular matrix J induces such an
order: the last element z,, only depend on himself, the previous element z,,_;
depends on himself and z,,, so z,, <4 z,_1, etc..

We define <; as an order that J respects. Let us show that W, (/) is upper-
triangular by choosing the lexicographic order <% with respect to < ;, defined
as:

e If x <, y two variables, then z <9 .
e If m; <% my, then for any monomial ms, my.mg <% ma.ms.

If z <% y then by definition x <; y. Moreover, m; <% my = (m; does
not appear in the expression of ms), then let ms any monomial. As m;.ms <%
mo.ms3, we can clearly see that m;.m3; does not appear in the expression of
my.ms. Therefore :

Lemma 4 Let J an upper triangular matrix, < ; be a dependency order respected by
J. Then for any k € N, <9 can be a dependency order for Wy,(.J).

By definition of the lexicographic order, we can state that for all z,y, 2z €
Var,if r <; y < z, then y'27 <% 2"/ is impossible for all i, j as « does not
depend on y or z, but the contrary is false. Thus:

Lemma 5 Let f a linear application, <; a dependency order on f, x,y € Var. Let
Mong(x,y) the set of variables representing monomials of degree lower or equal to d
depending on x and y. Then z <y x <; y = Yv € Mong(z,y), 2% <} v.

54 Chapter 3. Polynomial loops don’t exist

In other words, in a triangular matrix M representing x, y, z and its mono-
mials, if x and y are over z and M respects <, then z".y7 will always be over
2k, for every i, j, k with k < i + j.

Let z,y two variables and ¢,, ¢, the vector of coefficients of J on the line
of respectively = and y, except the coefficient of z and y. In other words, for
. ¥ = x4+ X
X the vector of variables, we have:

Yy o= Ayt X

When one develop z'.y/, there is :
o 0 for monomial variables of strictly higher degree ;

e for any variable t < = < y, 0 for monomial variables containing ¢ by
lemma 5 ;

e 0 for monomials z* .y withi' + j' =dand ¢ > i;

e a coefficient \}.)/ for the variable z*.3’, which will be on the diagonal
of Wy (J).

The third point is true because if z < y, then 2y <% 2"~ 'y/*! and <9 is
a dependency order for ¥, (.J) by Lemma 4.

U, (J) will be upper-triangular itself by respecting <9.

U

Eigenvectors behave simply by the transformation ¥ ;:

Property 8 Let A € M4(Q),A(M) the eigenvalue set of a matrix M and d an
integer. Then for any product p of d or less elements of A(A),p € A(V4(A)).

Proof. Let us consider J the Jordan normal form of A. As we are working
with C, which is an algebraically closed field, A is similar to J (ie. IP.A =
P~1JP), with

J. 0 .. 0 N 1.0
g= % L ands= % 7 lfor1<i<k
I § S |
0 .. 0 J 0 .. 0 X\

By Property 6, ¥4(A) and ¥,(J) are similar, hence have the same set of
eigenvalues. The transformation of a variable x by J can be either of the
form A.z, or A.xz + y, with X an eigenvalue of J and y another variable.

Let x; and z, two variables in the base of J. As 2} = Az, + 3 and
xh = ATy + Yo, then (z122) = M Agz129 + ... As ¥,4(J) is upper triangular
by Property 7, then the coefficient of x;z, in the expression of (z1z5)" is an
eigenvalue. The generalization for more than 2 variables is straightforward
by induction.

O

There is also an interesting property about eigenspaces of W,(A):

Property 9 If A admits a generalized eigenvector o associated to X of order n (i.e.
(A= XId)" ' #0and (A— NId)".p = 0)and an eigenvector associated to N,
then U 4(A) admits a generalized eigenvector associated to A\.\" of order n.

3.5. Application to formal verification 55

Proof. Let us first prove this theorem for d = 2. Let A, " two eigenvalues.
If A admit a generalized eigenvector v, of order n for the eigenvalue), then
there exist vy, v, ..., v, € Q" such that

v] = A

vy = Avg+

Also we have that vy, = XN.vy

For all 4, v;(X).vy(X) is a polynomial of degree 2, or in other words
a linear combination of monomials of degree 2. Let us prove that w; the
vector such that w;(V2(X)) = v;(X).vn(X) is a generalized eigenvector as-
sociated to A\.\" of order n by recurrence. If n = 1, then it is clear that
(Wa(A)awy)(Va(X)) = AN 0y (X).un(X) = AN wy (Uy(X)) for all X. Therefore,
w; is an eigenvector of WU,(A) associated to A.\'.

Assume now w;_; for i < n is a generalized eigenvector of order 7 associ-
ated to \.)\. Therefore, we have (Uy(A) — \.N.Id)" " .w;_y = 0 For all X, the
following equalities hold:

(WQ(A) wz) (\IJQ(X» = /\/.U)\/ (X)(/\Uz (X) + v (X))
(Wa(A)w;)(Va(X)) = ANy (X).v(X)
+N oy (X).vi1 (X))

(Wa(A) = M. Id) s, = Moo (X).0n1(X))
(Uo(A) = W.Id)aw; = Ny
(‘IIQ(A) —)\/\’]d)lwl = (\I/ (A) — /\X.]d)"’l./\’.wi_l

Thus, w; is an eigenvector of order . This proof is also valid for d > 2 as
U, represents monomials of degree d and lower. .

3.5 Application to formal verification

When a polynomial expression occurs in an arithmetic expression, static an-
alyzers have multiple ways to deal with it:

1. consider it belongs to an undecidable class of program and fail, as it
is out of the decidable Presburger arithmetic (for example, acceleration
techniques are restricted to linear transformations [GS14; Bar+05]);

2. precisely analyse it, with no guarantee to eventually end (for example,
SMT-solvers [MBO08; Bar+11] cannot fully handle polynomial expres-
sions);

3. approximate it and try to maintain the smallest gap possible between
reality and abstraction (for example, in abstract interpretation, affine
arithmetic abstract domains such as the zonotope domain [GGP09] and
the octagon domain [Min06] perform approximations when treating
polynomial expressions).

In the two first cases, linearization seems to be a straightforward manner to
enhance their set of applications (though the loop initialization still require

56 Chapter 3. Polynomial loops don’t exist

polynomial expressions, which may limit the enhancement of linearization
for SMT solvers).

Abstract interpretation [CC77] aims at inferring invariant properties on
different program point by propagating an abstract value representing an ab-
straction of the set of possible states through each instruction of a given pro-
gram. Each possible expression is endowed with transformation rules that
are used to transform the abstract value along the analysis. Usually when
a loop is encountered, the abstract interpreter performs approximations that
guarantees to converge to an abstract value in a finite number of steps: this
is called widening. For example, the octagon abstract domain [Min06] uses
linear inequalities as abstract values. Starting from an initial state v < a, the
abstract execution of z = z + 1 returns z < a + 1. When a polynomial ex-
pression is encountered, the problem becomes harder. If x < 5and y > -3,
we cannot conclude anything about x * y because this expression can be ar-
bitrarily large. Intuitively, polynomial expressions will have a very negative
impact on the the precision of the computed abstract values. This is partic-
ularly true when a polynomial expression occurs in a loop. If the loop can
be linearized, there will still be some polynomial expressions before the loop,
to compute the initial state of the additional variables, but they will be com-
puted only once and will not be subject to widening.

Experimentations. Consider the example of Figure 3.1 with the initial state
x € [-b,5] and y € [—5, 5]. This loop is supposed to have very few iterations
as « increases quadratically and y affinely. Using Frama-C’s abstract inter-
preter EVA [Kir+15; BBY17] (Phosphorus version) that propagates different
domains simultaneously, we compared the use of linearization by analyzing
both loops with the interval domain and the octagon domain. By setting EVA
to unroll 11 times each loop, it concludes in the polynomial example to the
state ©+ € [—5,239] Ay € [—5,16], while in the linearized example we get
x € [—5,146] Ay € [-5,18]. Though the second example admits a small loss
of precision over y ', we gain a lot of precision over .

The loss of precision is suspected to come from a precision error from the polynomial
expression that is somehow propagated to y and to the halting condition of the loop.

57

Chapter 4

A widening operator for the
zonotope abstract domain

Contents
41 Approximation of convergent linear filters 58
42 Context............. i, 62
421 The family of the numerical linear filters 62
42.2 The zonotope abstract domain 63
4.3 Synthesis by parametrized variation 65
43.1 Description of themethod 65
43.2 Inclusion of meta-zonotopes 68
4.4 Completness onlinearfilters 70
4.5 Experiments and conclusion 72

Requirements: Linear algebra (Section 2.1), Programming model (Section 2.2), Ab-
stract interpretation (Section 2.5)

The analysis of loop invariants is usually performed through a propaga-
tion analysis (the analysis of the behavior of the analyzed code, performed by
Abstract Interpretation [CC77]. This framework has the advantage to be cus-
tomizable enough to adapt its analysis to the analyzed problem by the free
choice of abstract domains. Thanks to the previous chapter, we also know
that polynomials and linear loops are strongly linked. From this, we will be
interested in generating linear and polynomial relations on variables of linear
loops.

This Chapter focuses convergent linear filters, that are linear loops con-
taining non-determinism. It presents an abstract interpretation widening
operator for the zonotope abstract domain [GPV12] that is based on the
parametrization of the abstract values.

58 Chapter 4. A widening operator for the zonotope abstract domain

4.1 Approximation of convergent linear filters

In a abstract interpreter, the widening operator plays a crucial role in the
precision of the analysis. As defined in Section 2.5, a widening operator gen-
eralizes the abstract memory state by extrapolating its behavior through one
or multiple iterations. In practice, it chooses one of the highest common val-
ues inductively preserved by an iteration. In simple domains like intervals,
a common value between two iterations can easily be found, but finding an
inductive value for a whole loop require the use of a widening operator.

In some cases the abstract interpreter may rely on loop acceleration (cf
Section 2.4) returning exactly its set of reachable states. Though it then re-
turns a more precise representation of the loop, it is only applicable under
strong hypotheses like finite monoid [GS14]. To illustrate such an approxi-

LISTING 4.1: LISTING 4.2:
geometric simple linear filter
series
S =850 =851 = 0.0;
x = 0; while (*)
while (x) S1 = S0;
x = 0.8%x + [-1,1]; S0 = S;
S = [-1,1] + 1.4%xS0 - 0.7%S51;

FIGURE 4.1: Simple non deterministic linear loops

mation, we perform abstract iterations with the interval domain on the ge-
ometric series of Figure 4.1. The analysis starts with € [—1, 1], then finds
r € [-1.8,1.8], and x € [—2.44,2.44]. This process could loop forever if we
didn’t use a widening operator. One of the simplest widening operators
(but one of the most efficient in term of computation time and used in ab-
stract interpetors) consists in generalizing an upper bound increase by +o0o
and a lower bound decrease one by —oo. In other words, it return in this
example [—oo, +00] as both bounds increase and decrease. Any widening
operator finds stable iterations with bounds greater or equal than the mini-
mal bound, which is 5 for this simple example. But how to find a solution
near the minimal bound within a limited number of iterations? Moreover,
on the second example, bounds for each variable independently grow (inde-
pendently because intervals do not catch relations between variables), and
the simple widening operator for intervals would return S € [—o0, +0o0],
which is clearly not precise enough considering that an invariant of this loop
is S € [—7.589424, +7.589424]. In general, inductive invariants of such nu-
merical program are difficult to approximate efficiently. Synthesis of strong
inductive invariants is however critical in order to perform a successful ver-
ification.

Convergent linear filters. Convergent linear filters are linear transforma-
tions receiving multiple inputs over time. From a computer system point of

4.1. Approximation of convergent linear filters 59

view, those inputs are generally randomly picked in a known interval. The
purpose of such filters is to keep track of all the information received through
its execution while reducing the impact of the past inputs. The examples in
Figure 4.1 are convergent linear filters. At first, on the Listing 4.1 filter, the
value of x belongs to [—1, 1]. It can be written as 3¢ € [—1, 1] such that x = ¢.
Then, z admits the following expressions:

2'diteration x = Feg,e; € [~1,1]: g1+ 0.8 % &g

3'iteration x = Jeg,e1,65 € [—1,1] : g9+ 0.8 %1 +0.64 * ey

4thiteration z = Jeg, 1,690,635 € [—1, 1] : 3+ 0.8xe9+0.64 % e
+0.512¢

with ¢; € [—1,1]. As we can see, the coefficient associated to the most
recent ¢; is higher, hence it has more impact on the loop state than the older
ones. On the previous examples, while the bounds were growing, the differ-
ence between two successive abstract values gets smaller after every iteration
because of the same reason.

Linear filters also have the advantage to reduce occasional precision er-
rors over time, as they would slowly be erased as time goes by.

Zonotopes and linear filters. In [Rou+12], authors study numerical filters
in an abstract domain expressing polynomial inequalities on its variables.
Ellipsoids have shown to be very efficient to approximate invariants of lin-
ear filters, but they are often not inductive and therefore, hard to generate.
This issue can be avoided by approximating ellipsoids. For example, an ap-
proach like [MBR16] is able to prove invariants by overapproximating it by
constructing an invariant by chunks. Another possibility, which will be stud-
ied in this Chapter, is the use of zonotopes [GGP09; GPV12; GP15].

Zonotopes are convex symmetric polyedra where every face has a sym-
metric point. They can be described in two equivalent manners:

e by a collection of edges and nodes, as a geometric figure;

e by a vector of sums of the form > a;s; where ; € R define the zono-
i=0
tope and ¢; € [—1, 1] are parameters.

Figure 4.2 presents the link between the two representations. The prop-
erty “(z,y) is inside the parallelogram ABCD” is equivalent to Jej,e0 €
[—1,1].(x,y) = (61,61 + €2)

The zonotope abstract domain [GGP09; GP15] is based on this second
representation and is particularily well suited for the analysis of linear fil-
ters given the similarity between the zonotope expression and the variables
reachable state.

This Chapter adresses the problem of generating invariants for conver-
gent linear filters in the context of abstract interpretation on the zonotope
abstract domain. Instead of applying the usual widening methodology (i.e.
finding a common higher value on a different lattice, cf Section 2.5), this
chapter exploits parametrization techniques to find a higher common value.

60 Chapter 4. A widening operator for the zonotope abstract domain

-3

FIGURE 4.2: A zonotope can be defined as a geometric figure
with different nodes and edges, or as a vector of Minkowski
sums.

Though this has the drawback of not converging in the general case, we will
prove that it always converges when applied on convergent linear filters.
This heuristic allows a greater precision than abstract interpretation at a cost
of genericity, and is comparable to acceleration techniques (cf Table 4.1).

Widening | Acceleration | Testing | This technique
Termination v v X v
Genericity v X v X
Precision X v v v
Soundness v v X v

TABLE 4.1: Comparison of this technique with other state of the
art methods

4.1. Approximation of convergent linear filters 61

Tg

after n iterates stretch factor = ., 94 expansion factor=28 inductive invariant
under-approximation of no inductive imvariant multiplication of the with o, 0, and 2
azonotopic invariant found with only g, o, zonotope by &

FIGURE 4.3: Perturbation of the zonotope candidate invariant
(in beige) in comparison to the actual ellipsoid invariant (in
blue).

Outline of the algorithm. The heuristic proceed in two phases. It starts
after an abstract iteration over the zonotope abstract domain. As we saw,
zonotopes can be defined as vectors of sums parametrized by noise symbols ¢
that are free to evolve in [—1, +1]. The value of every program variable v is
expressed as a sequence v, = o + » ., a; * &; where vy, is the value of v at
the k™ iteration, (;)i<i<, are real constants and (¢;)1<;<, are noises, i.e. non
deterministic values.

Let X be the variables of the loop and ¢ € [—1,+1] a non-deterministic
value. Let’s denote tf(X, ¢) the forward transfer function of the loop body.
The abstract interpreter iterates the loop and infers a zonotope for each vari-
able. In parallel of this iteration, the method will try to guess a good can-
didate invariant by confronting two similar successive iterations. When two
zonotopes z; and z, are close enough, z; will serve as a base for finding an
inductive invariant. Our key heuristic consists in stretching and expanding z;.

This process is described in Figure 4.3. The zonotope on the first figure
represents an under approximation of the actual ellipsoid invariant of a loop
manipulating two variables z and y. Hence, it is in two dimensions: hor-
izontal for x and vertical for y. Intuitively, a very small weakening of the
zonotope would be a good candidate invariant as it is already close to the ac-
tual invariant. A first method to weaken it is to add to each variable a small
value o so that it encompasses the invariant. Geometrically speaking, with
two variables, it would stretch the zonotope vertically and horizontally as in
the second part of Figure 4.3. By choosing large enough parameters, the re-
sulting candidate is weaker than the searched invariant but it might still not
be inductive. A second way to weaken it is to multiply the value of x and y
by (1+§) where 6§ > 0 is a small real . The zonotope would then be expanded
proportionally in every direction as presented in the third picture. Finally,
the candidate invariant in the last picture verify (1+0)z + o, where z was the
initial zonotope of the first picture. With those two parameters, we can find
an inductive zonotope approximating the aimed ellipsoid.

!In practice, we will see that a different § can be choosen for each variable.

62 Chapter 4. A widening operator for the zonotope abstract domain

The inductiveness of this parameterized candidate is expressed as con-
straints, then sent to a solver which will search for a valuation of the pa-
rameters. If such a valuation is found, the inductiveness of the relation is
proven and the method outputs a correct inductive invariant. Otherwise, the
abstract interpreter iterates once more and tries again to find an invariant by
the same technique over different abstract values.

Let us apply the previous method for the geometric sequence of Fig-
ure 4.1, the transfer function is tf(z, ¢) = 0.8 * x + ¢ and =z starts at 0. First, by
applying abstract iterations on the zonotope domain, we find:

1%t iteration: ey € [—1,+1]. T = &
2nd jteration: Jei,e0 € [—1,+1]2 29 = & +0.8¢4
common residue

The zonotope of z, can be decomposed into two parts: the common part
in both equations (¢; in z; and €5 in ;) that we denote 5 and the difference
(0.8¢1), which we will call the residue and denote 0.8¢,. The common part
has, by definition, a good chance to appear in the real inductive invariant.
The technique first expands the common part €5 by multiplying it by a pa-
rameter (1 + 0) Then, it stretches the zonotope, i.e. it adds to the expanded
component a parametrization of the residue for each variable (which widens
the zonotope horizontally and vertically). We end up with the following can-
didate zonotope invariant zs,(¢5,£,) = (1 4 0)es + 0.80¢,.

We need to find §, o such that 3¢5, ¢, € [—1, 1]%. 2 = 25, (e, €,) is inductive,
i.e. that this relation is preserved by a loop iteration. If it is inductive and as it
is true at the firstiteration, then it is an invariant. By performing one iteration
over z;,, we end up with zj (¢, ¢,,65) = tf(250(¢5,65)) = € + 0.8(1 + §)es +
0.640¢,. Proving the inductiveness of the relation is equivalent to proving
the inclusion of the two zonotopes 2}, (¢, 5, €5) and z5,(c5, €,,), as it would
mean that after one step the program state still belong to the initial zonotope
(which is the definition of inductivity). This chapter proposes a simplified
version of the inclusion of two zonotopes based on the following mapping

between the ¢ symbols: &} & seand e, 08040 . | 06do, This inclusion
is valid with § > 0 and 0.80 > 0.8(1 + §) + 0.640, satisfied with 6 = 0 and

o = 5. Hence,

(1+0)e+ (0.8%5)e, =€+ 4e,

is a real inductive invariant for 6 = 0 and o = 5. Its projection on the interval
domain is [-1, 1] + 4 % [-1, 1] = [-5, 5] which is the minimal invariant of this
loop on the intervals.

4.2 Context

4.21 The family of the numerical linear filters

In this programming model, we consider the family of the numerical linear
filters.

Definition 18 A linear filter is a sequence (.S,,)nen such that :

4.2. Context 63

[ag, bo] [uo, vo
o (Sy) = , (Vo) = are non deterministic vectors
(@, bn) [Un, Un]
with constant bounds

mi1 ... Mig
e (M) = Cee e is the transformation matrix
mgi1 ... Mgk

)

® (Snt1) = (M).(Sn) + (V2)

A linear filter is convergent if and only if all the eigenvalues (the real and
the complex ones) of the matrix (M) have a norm strictly lower than 1. In
this case, all the values of (.S,) remain bounded, i.e. there exists a closed
interval I independent of n such that for any vector (V,,) and Vn, S,, € I. The
program syntax defined in Figure 2.2 includes the necessary instruction for
describing convergent linear filters, as linear filters don’t use conditions nor
nested loops.

4.2.2 The zonotope abstract domain

Every variable vector X = (z1, ..., z,,) is abstracted by a zonotope z° of dimen-
sion n, i.e. a vector of Minkowski sums [Min10] xﬁ = aé + E:il af * £; Where
the o are real constants and ¢ = (e1, ...6,+) a vector of non deterministic ex-
pressions taking value in [—1, 1]. Every coefficient of the vector representing
the zonotope share the same ¢;. When ¢ is clear in the context, we simply
refer to z. Let us define Aff as the set of such affine forms or linear equations,
and their norm is defined as ||2*|| = |ag| + > i, || the maximal valuation of
|z¥|. An affine form 2% = o+ Y21, oy X &; is included in 2% = o+ 37", B x &}
when Vey,...,e,, 3!, ..., el, such that ag + > 1 o x & = Bo+ doimy Bi X €}
The inclusion between two zonotopes 25 and z5 is defined equivalently, i.e.
Ve, Je'.25 = 25 . Ttis stronger than the inclusion of each individual component
as ¢; are shared between each component. For example, let z; = (¢1,¢2) and
2 = (e}, e} + 1) While each component of z; is included in 25, the point
(1, —1) belong to z; while it doesn’t belong to z,.

We denote Meta-Aff the set of meta-affine equations, i.e. parametrized
affine equations : R* — Aff. Meta-zonotopes are defined as vectors of meta-
affine equations. Zonotopes and meta-zonotopes can also be denoted =°,
where ¢ represent the non deterministic elements of the equation. Zono-
topes and intervals catch different properties. The abstract interpreter Fluc-
tuat [Goul3] infers the intersection of intervals and zonotopes as depicted
on Figure 4.4. Zonotopes can also express floating point approximations by
assimilating them to new variables €. As an example, a variable x in the in-
terval [0, \] is abstracted by the meta-equation x* = (0.5 + 0.5¢¢). For A = 1,
2% = 0.5 + 0.5, defines an affine equation. A non-linear computation intro-
ducing c x ¢; X ¢; is linearized by 5 + 5¢x, where ¢, is a fresh non deterministic

variable. For example, 2* — 2#* is treated as follows:

64 Chapter 4. A widening operator for the zonotope abstract domain

00 10 x 00 10 x 0.0 10 x

reduced product &

interval & zonotope partition in two parts partition

FIGURE 4.4: Abstraction of f(x) = 2? with intervals, zono-

topes, and their intersection. The first figure depicts the inde-

pendent analysis of f on I = [0, 1] with intervals (in yellow) and

zonotopes (in orange). Partitioning I into two intervals on the

second figure makes the analysis more precise, and intersect-

ing both abstract values in the last figure returs an even more
precise approximation.

2 = (0.5 + 0.5e0) x (0.5 4 0.529) = 0.25 + 0.5 + 0.125 + 0.125¢,

0.375 + 0.5¢¢ + 0.125¢,
2t — a2 = (0.5 +0.5e0) — (0.375 4 0.5g¢ + 0.125¢;) = 0.125 — 0.125¢,

Hence zonotopes prove that x — z? € [0, 0.25], while intervals are only
able to prove that x — 2? € [—1,+1], or in [0, +1] if x — 2? is rewritten into
x(1 — z). Nevertheless, the linearization step (Taylor approximation around
the center of the zonotope [GGP09]) might miss some important information:
here zonotopes guarantee that 2> € [—0.25, +1] whereas intervals guarantee
a better interval result: 22 € [0, +1] (see Figure 4.4).

Applying a transformation to a zonotope correspond to the application
of the given transformation on the Minkowski sums vector representing the
zonotope. In other words, a linear application ¢ mapping a vector to a scalar
also maps a zonotope to a Minkowski sum. Hence, the matrix-vector multi-
plication is also defined for matrices and zonotopes.

Geometric representation of zonotopes. Zonotopes also admit a geometric
representation defined by a set of vertices V and sides S = V x V. For a
zonotope z°, v € V iff for an extreme valuation of ¢ (i.e. ¢; are only 1 and
—1), 2 = v. For two valuations ¢ and ¢, there exists a side between v; = 2°
and vy = 2 for the zonotope z if and only if there is only one coefficient of
difference between ¢ and ¢’.

The geometric representation of a zonotope with n noise symbols is de-
tined with 2" different vertices, which makes this representation hardly us-
able in practice. That is why we will only focus on Minkowski sums when
performing calculations.

4.3. Synthesis by parametrized variation 65

4.3 Synthesis by parametrized variation

4.3.1 Description of the method

The algorithm of Figure 4.5 presents the different steps to generate the invari-
ant candidate. When the interpreter encounters a loop, the algorithm starts.

Data: tf : stat; 2 : zonotope; 7 : float;
Result: A zonotope z;,, invariant of ¢ f;

Ziny = L;

while z;,, = 1 do

2 =tf(2);

if 2 ><" 7’ then
Zeand ‘= generalize(z,2');
Ziny = tf(zcand> =1 Zcands

z:=2;
else

| z:=2
end

end

FIGURE 4.5: Abstract iterator shortcut algorithm. The generalize
function represents the parametrization of the zonotope z by
the stretch factor and the expansion factor.

Its role is simply to keep iterating the loop to keep track of two successive
iterations z and 2’ and confront them (z ><" 2’), i.e. checks if the two itera-
tions are relatively similar. If the confrontation fails, the algorithm starts on
the next abstract iteration of the loop. Otherwise, it builds a candidate invari-
ant 2z, by generalizing the shape of 2, i.e. adding parameters to its expression.
If there exists a valuation of those parameters such that z,. is inductive, then
an invariant has been found. Each abstract interpretation step is illustrated
by the simple-filter of Figure 4.2 whose loop body is:

Sl < S50; SO0 < S; S « [-1,1] 4+ 1.4%xS0 - 0.7x51;

First step: loop iteration. As long as a candidate is not generated, the al-
gorithm iterates on the loop. This is the standard abstract iteration on zono-
topes, computing the abstract value of S1, 50 and S after each step. For ex-
ample, here are the equations stored for each variable after 1, 2 and 3 steps:

S1—0 S0—0 S — g after 1 iter.
S1+—0 S0 g S+ g1 + l.4gg after 2 iter.
Slrreg SO e+ 1deg S ey 1dey 4+ 1.26e0 + 27122, after 3 iter.

During the abstract iteration, we will take into account rounding errors per-
formed by our internal floating point calculations. The last iteration shows

66 Chapter 4. A widening operator for the zonotope abstract domain

that even if the analysis follows real semantics, the abstract interpreter can-
not exactly compute1.4 « 1.4 - 0.7 = 1.26.Itcan onlyconclude that
this value is in the interval [1.26 - 2% 2723, 1.26 + 2x27'23] whichis
represented in the zonotopic domain by 1.26 + 27'?24(. * Then p is an ab-
straction with a new fresh variable for ¢y x 1, that lays in the interval [—1, 1].
As it is an internal rounding error, it is assigned to a different type of fresh
variable with different properties to not interfere with the ¢ variables. After
4 iterations, the memory abstraction would have the following content:

S1+e;+ 14y SO ey + 1.dey + 1.2650 + 27122,
S+ eg+ 1.4e9 + 1.26e1 4+ 0.784¢¢ + 3.9 x 2_122u1

In order to simplify the running example in this Chapter, we will stop
considering internal accuracy errors.

Second step: confronting iterations and building a candidate. When lin-
early transforming a zonotope, many similitudes are observable in their ex-
pression. The 3™ and the 4™ iteration of the example are very similar. Let us
compare the value of S at the third and fourth iteration:

Third iteration S + ey + 1.4, + 1.26¢¢ +27122)4
Fourth iteration S > &5+ 1.4ey + 1.26e; +0.784c + 3.9 x 27122,

By changing ¢; in the 3rd by ¢;11, the only difference is 0.784¢, plus the
precision error. The objective of the confrontation is to capture this difference
to find a good candidate invariant. During this step, the abstract interpreter
extends the affine forms equ € Aff with meta affine forms m-equ € Meta-Aff.

Let equ

pre curr

= > ase; and equ,, = > fBie; the equation respectively associ-
i=1 i=1

ated to a given variable at the previous iteration and at the current iteration.
The confrontation operator ><1" will first apply a global loop renaming ren on
equ,,,. so that the ¢ introduced in equ ., matches the one inequ .. In practice,
it performs a shift of s on the indexes of equ , . where s is the number of new
noise symbols added by the current step of the loop. After the renaming, the
equation’s projection on intervals remains the same.

In order to check if two zonotopes are close, we need to define a metric on
zonotopes and a bound 7.

Definition 19 The confrontation constraint ><I" is defined as

equp’r'e MT equcurr = (| |equc’u,7‘7‘ - ren(equpre) || < Tl |equp7‘e| |) (4'1)

2Qur internal representation of reals uses 123 bits for the mantissa, catched by the extra
non deterministic noise 1.

4.3. Synthesis by parametrized variation 67

Third step: confronting iterations and building a candidate. The success
of the confrontation is a good clue that the current zonotope is close to an
inductive invariant as the two iterations are close. More precisely, transform-
ing each equ , by ¢ does not change it a lot. That is why a small perturbation
of equ,, . is a good invariant candidate. A candidate invariant is built from
equ_ by following two heuristics.

pre

e Adding a generalization of the previous equation equ, ., as a meta equa-
tion m-equ € Meta-Aff. By confronting equ . with the next abstract
value, we know that the difference is small (7 is expected to be small
for the method to find a candidate invariant). To catch an upper bound
of this difference in the general case, the generalization will be

Opre-T-|leqit,,, .|| €

with o,,. the stretch factor a parameter left to find and ¢, a fresh noise
symbol.

e Adding a perturbation of the initial equation ren(equ,) represented
by the meta equation

5177"6 ‘equpre

where 0,,. is called the expansion factor.

The final candidate invariant is m-equ, defined by

. def
generalize(equ,,..) = (1 + Opre)equ,,,, + opre.7-|lequ,,. ||.co 4.2)

Both paramerers are greater than 0. This generalization is performed for ev-
ery component of the vector describing the zonotope with different parame-
ters 0 and o.

On the simple filter example of Figure 4.1, we choosed T = 1. The confronta-
tion succeds for all affine forms and the following candidates are generated:

S1 = (1 + (50)(83 + 1.452 + 12681) + 3.660’0800
S0 = (]. + 51)(54 +]_.483 + 1.2662 + 078451) + 4.4440'180—1
S = (1+09)(e5+ l.dey + 1.26e3 + 0.784e5 + 0.2156¢1) + 4.659609¢,,,

Fourth step : finding a valuation of the parameters If all confrontations
have been accepted by the previous step, then the invariant synthesizer pro-
vide an invariant candidate that involves all the variables modified by the
loop. The job of this step is to take the invariant candidate and infer a valua-
tion of the parameters, making it inductive. It first applies the loop transfor-
mation to the candidate invariant m-z;,,, which returns a new meta zonotope
M-Zpeqt-

Definition 20 The confrontation for inclusion operator =<
returns a valuation Val = (0;,0;)o<i<n Of the 2n parameters such that for two
meta zonotopes m-zy, Mm-z,, we have :

68 Chapter 4. A widening operator for the zonotope abstract domain

o Val ™ m-z; D=1 M-2y
o m-z,[Val| C m-z,[Val] for the zonotope inclusion.

If no such Val is found, it returns L.

When this confrontation is applied to m1-z,,c,; and m-z,,.. (M-Zpepe =1 M-2Zpc)
verifies that the inferred conclusion can match the induction hypotheses. If
Val exists and is found, then m-z;,,[Val] is inductive.

Quantification of the error rate. The success of the b= operator guaran-
tees to return an inductive invariant w.r.t. the analyzed transfer function.
Still without the constraints enforced by the ><1" operator between two suc-
cessive iterations and a small bound on parameters § and o, an inductive
invariant may be found. However, there would consequently be no guar-
antee on how overapproximated it would be. Those bounds allow having a
precise estimation of the invariant preciseness.

Theorem 2 Let z, the zonotope at the n' iteration of the transfer function tf. If
2n D<A" 2,41 18 satisfied, (0,0) = tf(z.) <3 z. and the resulting candidate invari-
ant z. verifies z.(tf(z.) <1 z.) = Ziny # L, then zy, is an inductive invariant of
the loop and

Zn C iUt C Zipy C (1 4+ 64 0.7)2,

where inv,y, is the optimal inductive invariant of the loop verifying z, C invgp.

Proof. The candidate invariant z. = (z1, 22, ..., 24) is defined in equation
(4.2):
zi(0,0) = (1 + &) ren(zri) + 007|284 | -€0

The norm of an affine form is the sum of the absolute value of its coeffi-
cients. As z;; and 0,.7.||2,||.€, have disjoint noise symbols, the sum of their

norm is the norm of their sum. Thus, ||z;(0,9)|| = |[(1 + 0;)zi|| + 0:-7|| 2]
As ||zl = ||ren(zr,)||, itis clear that ||z || < [|zi(0,0)|| < (1+6; +047)]| | 2k.4|
O

This theorem guarantees that if the method successfully generates an in-
variant, the interval projection of the zonotope on the intervals for each vari-
able is strongly bounded by 7, §; and ;.

4.3.2 Inclusion of meta-zonotopes

Let z; a zonotope and z,.; = tf(z), such that z;, ><" z,;. The candi-
date invariant z{ is defined by 0 < ¢ < n a vector of meta affine forms
(14 0)equ, + o.7.|lequ,||.€,. Finding suitable parameters (¢;, o;) for two meta
zonotopes 25 and z5 = tf(25) to satisfy 25 b= 2§ requires to solve quantified
constraints on € and ¢’. More precisely, the b= operator attempts to find (6, o)
a vector of parameters such that Ve, 3¢’.25(0o, 09, ...) = 2§ (6, 0). The presence

4.3. Synthesis by parametrized variation 69

of quantifiers makes it impossible to send the constraints generated by =i to
an implementation of the simplex algorithm for resolution. Also, noise sym-
bols are shared between meta-equations of the zonotope, which complexify
the search of parameters. That is why we propose some heuristics to reduce
the number of ¢ that are quantified in the hope to ease the task of the solver.

1. renaming between ¢’ and ¢;
2. heuristical and temporary definitions of ¢’ for simplification issues;

3. application of the Fourier-Motzkin algorithm [Mon10] for relation elim-
ination issues.

The first technique is based on the renaming between the non determin-
istic £ symbols of z; to match those ¢ of z; such that z5(5,0) = 25 (6, 0) gets
easier to solve. Let us denote A; (resp. A) the coefficient of ¢; (resp. ¢)) in
m-equ,,., (resp. m-equ, and m-equ,). They are linear combinations of 4;, 0;.
Let us assume that the transfer function ¢f adds s new non deterministic
symbols to the zonotope. To check the confrontation in the previous section,
we applied a shift on the indexes of the noise symbols of ¢ f(z,,.) of s so that
their coefficients match. We will apply the same idea here, in other words,

= Ay + Z ANlel and m-equ = Ay + Z Niis€ivs + Z A,e; where

(€1)st+1<i<nts are fresh non deterministic syrnbols Three d1fferent cases are
possible:

If |A;1s| < |A}] for all valuations of ¢, o, then &/ is redefined as ¢, ;.

If |A; 5| > |A]] for all valuations of §, o, then ¢} is redefined as ¢, = AA—+ lin€itst

m- equpre next

(1— ﬁslm)e’-’ where €7 is a new fresh non deterministic noise and the lin-
earized divisions (%)un are the first order Taylor approximations of ¢. The
linearization is important because the ¢ intervene in other affine forms and
at the end we send linear constraints in 6, o to a linear solver. This renaming
eases the search of 4, & satisfying the induction criterion. Indeed, we first no-
tice that &} A/'\, tin€ivs + (1 — X:Slm)s for any valuation of A, and A}, so

we do not lose information through this renaming. Then, we get rid of ¢,
as the following equalities hold:

Ao — A} + z Ajes + 3 (A — AjRite e

i=1
+ Z (i+s T ; (Aj\zs lm)) Eits

Parameters ¢, o such that Ve, 3¢’ ren(m equ

finding 6, o satisfying 3¢”.

Ao — A} Aivs = N (S5000) | = SS(A} — A,)l which s

1=1
much simpler as we removed a universal quantifier.

If |Aiys| < |A)| is not decided , it is still possible to generate two constraint
systems. One with the additional constraint |A;| > |A;, .| and one with the
additional constraint |A;| < |A

m-equ,, ., — ren(m-equ,)

= m-equ, . can be found by

pre) next

z+s‘

70 Chapter 4. A widening operator for the zonotope abstract domain

Remaining shared symbols. One difficulty of inclusion comes from the
shared noise symbols. Particularily, the ¢ introduced by the second strat-
egy can be common to every affine form of the zonotope. When the solver
is still unable to solve these constraints, we can try to remove them from
the equation. A possibility to reduce the number of shared symbols is the
Fourier-Motzkin algorithm used in [Mon10].

Incomplete. These heuristics are used in the current implementation of the
algorithm as they have shown to increase the efficiency of the analysis. How-
ever, they are incomplete in the general case, in the sense that it is possible
the renaming does deletes some possible solutions.

4.4 Completness on linear filters

The method described in the previous section relies on the automatic dis-
covery of a precise pattern in the values describing the variables domain. In
addition, it must find suitable parameters for the candidate invariant to be in-
ductive, but there is no guarantee such values exists. If the domain diverges,
i.e. it keeps growing, the method will not converge as the abstract interpreter
will keep iterating. Besides, if we can guarantee that the variables domain
converges then both the expansion factor and the stretch factor would actu-
ally converge to 0.

Theorem 3 Let (S,,)nen a linear filter. If S is convergent, the algorithm in Fig-
ure 4.5 will find an inductive invariant for S.

Proof. We will first see in this proof that two successive iterations are get-
ting closer and closer after each iteration. Let S,, a linear filter defined by a
matrix M and a sequence of non determinsitic noises V,,. Let Z,, = (Z}, ..., ZF)
the sequence of zonotopes defined as Z, = V; and 7,11 = S.Z,, + V,,41. Let
us denote tf(Z,) = S.Z, + V,41. Each component Z! of Z, is a Minkowski

n2

sum) o’c; where o are real constants, possibly null. This sum has indeed
=0
n? terms at the n'" element of the sequence as each step adds at most n new

noise symbols (one by variable).

Let ren(Zf) = 3 ale;y, the shift of n on the indexes of ;. The shift
i=0

function is linear, in the sense that ren(z+2') = ren(z)+ren(2’). Let us extend
the ren notation to Z,, by applying it to each component of the vector. As V,
adds n new noise symbols, we will say that ren(V;,) = V,,+1. Also, as ren only
changes the indexes of ¢, we have that for any zonotope Z, ren(Z) C Z and
Z Cren(Z). Let us first prove the following lemma.

Lemma 6 There exist s such that (Z),,, — ren(Z,)" = o(e~"n®).

4.4. Completness on linear filters 71

Proof. We first notice that

There comes that

3

Lnt1 = Z M Wi+ Vi

=0

This expression is equivalent to

Zny1 = Z MV, i1 + M"Y,

1=0

hence we have that
Zny1 = ren(Z,) + M"Y,

As S is a convergent lienar filter, all the eigenvalues of M are lower than 1.
Its Jordan Normal form J (cf Section 2.1.6) is a upper triangular matrix with
eigenvalues on its diagonal. As there exist P such that M = P~1.J.P, we
have that M = P~1.J".P. J is composed of blocks J; of size s such that

Ao 1 0
J; = 0
. .
0 0 N\
We know then that
AP A" lwn o A" % P(n)
p=|"Y
) .
0 0 A

where P(n) is a polynomial in n of degree s — 1. As every J; is defined
such that |\;| < 1, the modulus of each coefficients of this block is asymptoti-
cally equivalent to e "n*"! near infinity. We recall that there exist P such that
Mm™ = P~'.J".P. Finite linear combinations of elements that are asymptoti-
cally equivalent to e "n*~! are also asymptotically equivalent to e "n*'.

O

This lemma has two interesting corolaries:

o lim (Z,41 —ren(Z,))=0;

n—-+o0o

e Z, converges.

Let us denote Z! = lirf Zy,. For any ¢, there exist n such that Z,, C Z; C
n—-+0oo
(14 6)Z,.

72 Chapter 4. A widening operator for the zonotope abstract domain

Program Var || Steps | Time
(in ms)
Example 1.1 2 14(2) 7
Example 1.2 3 18(5) 37
Simple filter 3 22(2) 9
[MBR16] filter | 3 22(2) 20

TABLE 4.2: Performance results with the method’s implemen-
tation in Fluctuat [Goul3]. The first two columns are the input
program and the corresponding number of variables. The num-
ber of iterations needed to reach a solvable candidate invariant
is in the third column, with the number of solving attempts by
D= before finding parameters making the invariant inductive.
The 4th column represents the total time taken for inferring the
invariant.

Also, tf is continue as it is an affine application on zonotopes (by consid-
ering V,, as a sequence of zonotope). As Z; is a limit of a serie described by
tf, then Z; is a fix point of ¢ f and therefore, an invariant for ¢ f.

O

4.5 Experiments and conclusion

A prototype of the technique described in this Chapter has been implemeted
in Fluctuat [Goul3], an abstract intepreter based on the zonotope abstract
domain. The first implementation only uses the stretch factor on every equa-
tion of the linear filter, which was not sufficient to find an inductive invari-
ant. On the other hand, the expansion factor is sufficient for the algorithm to
converge (which echoes the argument in the proof of Theorem 3 of choos-
ing 0 = 0) though the composition of the two makes the algorithm con-
verge faster on the tested examples. We have applied the method on sev-
eral linear filters (see Table 4.2). Choosen parameters for the ><I" operation

T = 4, for the stretch factor u the interval [— w, ”WWH] and for 0 the

64 64
interval|[— In other words, we will study the candidate invariant

64 + Ao = A
o1 <5o+ Z 51‘5@‘) +6_4 (;Wﬂ) Ep

i=k+1

4764]

if and only if Z 1Bi — ail < g Z |a;|. After 23 iterations, the method suc-

cessfully generates an inductive mvar1ant that is by construction very close

to the optimal invariant (by Theorem 2, at most &; + H q6 via el bigger than the

optimal zonotope solution). The low number of tested programs is due to

4.5. Experiments and conclusion 73

the difficulty of the inplace solver to find convenient parameters for candi-
date invariants. While this method generates many candidates passing the
confrontation, the constraint solver finds parameters only for a few of them.
The zonotope abstract domain is able to catch very precise relations for every
variable on a non-deterministic loops. One of the main issue for finding such
relations is to make abstract iterations converge. This widening operator al-
lows getting rid of this problem by bypassing all the difficulty thanks to a
dedicated solver. Though this solver theoretically solves any confrontation
constraint, the optimization choice of reducing as much as possible the value
of the meta-zonotopes parameters sometimes lead to bad computation time.
The recent development of SMT-solving over non linear constraints over the
reals [GKC13] is a promising solution to this issue.

75

Chapter 5

Eigenvectors as linear invariants of
linear loops

Contents
51 OVervVIEW . . . v v i v it ittt ettt ettt n 76
52 Simpleloops i i, 77
521 Semi-invariants L. 77
522 Eigenvectors areinvariants 78
53 Conditionsttt 79
54 Nestedloops i 81
55 Thecase A =1.ttt 83
55.1 ThevariableT, . 83
5.5.2 Quantified expression of invariants as eigenvectors. . 84
5.5.3 Elevationdegree. 85
5.6 Inequalities i 87
5.6.1 Convergence and divergence 87
5.6.2 Convergent invariants and eigenvectors 87
57 Nondeterminismttt 89
5.7.1 Non deterministic transformations 89
5.7.2 Generation of a candidate invariant 90
573 Optimizing expressions 91
574 Convergence 91
575 Initialstate., 93

Requirements: Linear algebra (Section 2.1), Programming model (Section 2.2)

The previous Chapter presented a method for determining zonotope in-
variants for a specific kind of linear loops (convergent linear filters). Abstract
iteration is the most commonly used technique when generating invariants
for such loops [Mau04; Del+09; Goul3; RG13], as its genericity allows giving
a formal semantic to non-determinism (the interval domain, the octagon do-
main, the zonotope domain, etc.). The issue of such an approach is the lack
of control of the analysis. Once the user launches an abstract interpreter, it

76 Chapter 5. Eigenvectors as linear invariants of linear loops

has very few control on the operations performed and the computation in
general (though semantic rules are consistently defined).

Instead of abstract intepretation, multiple works attempted to generate
invariants [Kov08; RK07] by analyzing a loop without value propagation nor
predicate abstraction, but as a whole transformation with inherent proper-
ties. For example, [RK07] generates polynomial invariants by working on
the Grobner base of the polynomial ring and using the ideal properties of in-
variants. The loop is analyzed once and invariants are directly synthesized.
The principal drawback of such techniques compared to abstract intepreta-
tion is their over-specialization: they can only work on very specific kind of
loops. However, this issue already arise in the previous Chapter as the al-
gorithm only converges on convergent linear filters, a sub class of the linear
transformations (cf Theorem 3).

This Chapter will treat of a straightforward generation of invariants for
linear loops in general, including linear filters and their non determinism.
More precisely, it syntactically extracts a complete characterization of linear in-
variants of linear loops.

This chapter is based on work that has been presented in [OBP16; OBP17]

5.1 Overview

Informally, an invariant for a loop is a formula that
1. is valid at the beginning of the loop (initialized invariants);
2. stays valid after every loop step (semi-invariants).

We are interested in finding polynomial numerical relations on variables
complying only with the second criterion such that they can be expressed
as a linear equation over X, a vector containing the assignment’s original
variables and the monomial variables generated by the linearization procedure
described in Chapter 3. In this setting, a formula satisfying the second cri-
terion can be represented as a vector of coefficients ¢ such that for a loop
transformation f we have

(p, X) = 0= {p, f(X)) =0 G.1)
By linear algebra, the following is always true
(o, F(X)) = (f"(9), X) (52)

where f* is the dual of f. If ¢ happens to be an eigenvector of f* (i.e. there
exists A such that f*(¢) = \p), the equation (5.1) becomes

(p, X) =0 = (f"(p),X >—ObY(2)

(f
<907X>:O = < 907X>
(p,X)=0 = A{(p,X)=0

5.2. Simple loops 77

which is always true. Therefore, the relation (p, X) = 0 is inductive for every
valuation of X.

Example. The deterministic polynomial loop in Figure 3.1, implements suc-
cessive applications of the transformation f(z,y) = (z + 3,y + 1). In Chap-
ter 3, we have proven that this polynomial loop can be replaced by a linear
one by replacing its body transformation f by g(x, y, y2, 1) = (z+y2, y+1, y2+
2y + 1,1). The problem of finding polynomial invariants is reduced to find-
ing linear invariants. However g does not admit any useful linear invariant,
while f admits —6.2+y—3.y>+2.4°> = 0 as an invariant relation between vari-
ables (if x and y starts at 0). To solve this issue, the elevation principle intro-
duced in Section 3.1 allows expressing the value of y* after multiple iterations
of f by a new variable y3, as we did for y* with y,. The loop transformation f
can be replaced by h(x,y, Y2, y3, 1) = (x+y2, y+1, yo+2y+1, y3+3y.+3y+1, 1)
We just need to transpose the matrix representing h to compute h* . It
returns A*(z,y, Y2, y3, 1) = (2, + y2 + Y3, 2 + Y2 + 3.y, U3,y + Y2 +ys + L,y +
Y2 +ys+1). h* only admits the eigenvalue 1. The eigenspace of h* associated
to 1 is generated by two independants vectors, ¢; = (—6,1,—3,2,0)" and
eo = (0,0,0,0,1)". Eventually, we get the formula Fy; 3o = (k1.(—6.2 +y —
3.2 + 2.y3) + ko.1 = 0) as invariant, with ki, ky € Q. By writing k = —Z—f
and replacing 1 with 1, we can rewrite it with only one parameter, Fj, =
(—=6.2 +y — 3.y2 + 2y3 = k). In this case, information on the initial state of the
loop allows to fix the value of the parameter k. For example if the loop starts
with (x = 0,y = 0), then —6.2 + y — 3.3? + 2.4® = 0, and F, is an invariant.

Contribution of this Chapter. This overview presented a shade of the link
between the eigenvector decomposition of a linear transformation and its
family of inductive invariants. Chapter 5 goes further by:

e proving that left-eigenvectors of a transformation f (i.e. eigenvectors
of the dual f*) are exactly the set of semi-invariants of a loop;

¢ studying the effects of the eigenvalues on those invariants;

e extending this characterization to conditional loops, nested loops and,
at last, non deterministic loops.

5.2 Simple loops

5.2.1 Semi-invariants

As said before, loop invariants can be characterized by two criteria : they
have to hold at the beginning of the loop (initialization criterion) and if they
hold at one step, then they hold at the next step (inductivity criterion). The
technique described here is based on the discovery of linear combinations
of variables that are equal to 0 and satisfying the inductivity criterion. For
example, the loop of section 3.1 admits the formula —6.2 +y — 3.y* + 2y° = k

78 Chapter 5. Eigenvectors as linear invariants of linear loops

as a good invariant candidate. Indeed, if we set k£ in accordance with the
values of the variables at the beginning of the loop, then this formula will be
true for any step of the loop. We call such formulas semi-invariants.

Definition 21 Let ¢ : K" — Kand f : K* — K" two linear mappings. ¢ is a
semi-invariant for f iff VX, (o, X) =0 = (¢, f(X)) = 0.

Definition 22 Let ¢ : K" = K, f : K" — K" and X € K". ¢ is an invariant for
f with initial state X iff (¢, X) = 0 and is a semi-invariant for f.

5.2.2 Eigenvectors are invariants

The key point of this technique relies on the fact that if there exists A, f*(p) =
Ay, then we know that ¢ is a semi-invariant. Indeed, we can rewrite defini-
tion 21 by (p,z) = 0 = (p, f(z)) = 0. By linear algebra, we have (p, f(z)) =
(f*(v),z), with f* the dual of f. If I\, f*(¢) = Ay, then we can deduce that
(p,) = 0= X (p,x) = 0. This formula is always true, thus we know that ¢ is
a semi-invariant. Such ¢ are commonly called eigenvectors of f*. We will not
adress the problem of computing the eigenvectors of an application as this
problem has been widely studied (in [PC99] for example).

Recall the running example g(z, y) = (z+y*, y+1), linearized by the appli-
cation f(z,y, yo, 2y, Y3, 1) = (x+y2, y+1, y2+2y+1, xy+2+y2+ys, Y3 +3y2+3y+
1,1). f* admits e; = (—6,1,-3,0,2,0)" and e5 = (0,0,0,0,0,1)" as eigenvec-
tors associated to the eigenvalue A = 1. It means that if (k;.e; + kgea, z) =0,
then

(ky.eq + kaea, f(X)) = (f*(ki.ex + koea), X)
= <)\(l€1.61 + k2€2), X>
= 0

In other words, (ky.e; + koey, X) = 0 is a semi-invariant. Then, by expanding
it, we can find that —6.x 4+ vy — 3.y + 2y = k, with k = — Z—j is a semi-invariant.
In terms of the original variables, we have thus —6.2 +y — 3.y* + 2¢® = k.
Being an eigenvector of f* does not just guarantee a formula to be a semi-
invariant of a loop transformed by f. This is also a necessary condition.

Theorem 4 ¢ is a semi-invariant of f if and only if ¢ is a left-eigenvector of f.

Proof. Let ¢ a semi-invariant. By definition, ((¢,z) = 0 = (¢, f(z)) =
0). This means that Vect(o)! is stable by f, so by Lemma 1, (Vect(o)t)t =
Vect(yp) is stable by f*. As p € Vect(p), we have f*(¢) = k..

0J

Remark. Vectors that do not belong to an eigenspace are not semi-invariants.
This is especially true for vectors such as ¢ = 1 + o where 9 and ¢ are not

colinear to ¢ and belong to two different eigenspaces. In this case, we have

that:

5.3. Conditions 79

while * do while * do
x = el; {x = el;
x = e2l;
{x = e21} OR {x = e22}; x = e3}

x = e3 OR
done {x = el;
x = e22;
x = e3}

done

FIGURE 5.1: The non deterministic choice in the middle of the
tirst loop can be made at the beginning of the loop.

[p) = M+ A0
= Ap.(W+0)+ i—z.a
=)\1/,(,0 + ﬁ.a
¢ is then clearly not an eigenvector, thus by Theorem 4 not a semi-invariant.
Semi-invariants of f don’t belong to, the direct sum of the eigenspaces, but
to their union.
An element ¢ of E), of basis {ey, ...e,, } is a linear combination of ey, ..., e,

n
Y= Z kie;
k=1
The parameters k; can be chosen with respect to the initial state of the loop.

Algorithm. As we are restricting this study to solvable loops, that we know
can be replaced without loss of generality by linear loops, we assume the in-
put of this algorithm is a finite sequence of linear mappings. Their composi-
tion A is also linear, and computed by multiplying each matrix. Computing
the dual of A is computing the matrix A”. Then, eigenvectors of A’ can be
computed by many algorithms in the linear algebra literature [PC99]. As
the eigenvalue problem is known to be polynomial, this invariant generation
algorithm is also polynomial.

5.3 Conditions

The construction i OR i of the semantics in Definition 2.2 defines a non de-
terministic choice between two possible instructions. If such a construction
occurs in the middle of a loop, this choice can be lifted to the beginning of
the loop ' (cf Figure 5.1).

1This could also be done if the condition was not deterministic. Indeed, testing if z > 0
after the assignment @ = = + 1 is equivalent to test is « + 1 > 0 before the assignment.

80 Chapter 5. Eigenvectors as linear invariants of linear loops

Definition 23 Let F' = {A; }1<i<n a family of matrices and Inv(F') the set of in-
variants of a loop whose different bodies can be encoded by elements of F'.

Inv(F) ={pVX,0.X =0= A\ ¢.A;.X =0}

=1

Definition 23 define semi-invariants of conditional loops as relations pre-
served by each body loops. This definition is consistent with the definition of
semi-invariants in general as, if there were a semi-invariant ¢ of such a loop,
¢ has to be an invariant for each loop body. The problem to compute Inv(F)

can then be reduced to the computation of the intersection of the invariants
sets of every loop body.

Property 10 Let F' = {A; }1<i<n a family of matrices.

Inv(F) = ﬂ Inv(A;)

Proof.

Lemma 7
Let F = {Ai}i<i<m, G = {Bi}1<i<n two matrix families. Then Inv(F U G) =
Inv(F) N Inv(QG)

Proof. Aswehave (p=q)A(p=71)) & (p= (gAT)),

(pX=0 = ApAd.X=0)

Inv(F)NInv(G) = < VX, L
A (eX=0 = A@B.X=0)

i=1

= {pVX,p X =0= (N oA X =0A \0.B.X =0)}
=1 =1

= Inv(FUG)

U

We can now prove Property 5.3 by induction over the size n of a family F.
If n equals 1, it is clearly true. If it is true for a certain n, then Inv(F' U {A}) =
Inv(F) N Inv({A}) by the previous lemma.

O

As the set of invariants of a single-body loop are a vector spaces union,
its intersection with another set of invariants is also a vector space union.
Although we do not consider the condition used by the program to choose
the correct body, we still can discover useful invariants. Let us consider the
following example, taken from [RKO07], that computes the product of z and y
in a variable z :

5.4. Nested loops 81

while (x) do

(x,v,2) := (2%, (y-1)/2, x + z)
OR
(x,v,2z) := (2x, y/2, z)

done

We have to deal with two applications : fi(z,y,2) = (22,(y — 1)/2,2 +
z) and fao(z,y,z) = (2z,y/2,z). The elevation to the degree 2 of f; and f,
returns applications having both 10 eigenvectors. For simplicity, we focus on
invariants associated to the eigenvalue 1.

f1 has 4 eigenvectors {e; }ic1,4 as- f5 also has 4 eigenvectors
sociated to 1 such that {€:}icp, 4 associated to 1 such that

o (e, X) = —z+uy o (¢, X)=umy

o (e, X)=x+2 o (e, X)=12z2

o (e3,X)=uaxz+ 2+ 2? o (e}, X) =22

o (e, X) =1 o (¢, X)=1

First, we notice that e, = €}. Then, we can see that (e; + ey, X) = xy+ 2z =
(€] + €4, X). Thus, e; + e2 = €| + €,. Eventually, we find that e; + es + k.ey €
(Vect({ei}icp,a) N Vect({€}icn,q)). That's why ({e; +es + k.eq, X) = 0) is
a semi-invariant for both f; and f5, hence for the whole loop. Replacing
(k.eq, X) by k = —k" and (e; + €3, X) by 2y + 2 gives us zy + 2z = k.

Algorithm. The intersection of two vector spaces corresponds to the vectors
that both vector spaces have in common. It means that such elements can
be expressed by elements of the base of each vector space. Let B; and B,
bases of the two vector spaces. If e € Vect{B;} and e € Vect{B,}, then
e € ker{(B1Bs)}, where B B; is the concatenation of both bases in a single
matrix. To compute the intersection of a vector space union, we just have to
compute the kernels of each combination of vector space in the union.

5.4 Nested loops

When a loop is a linear application, it can be represented by the matrix prod-
uct of each instruction which composes every instruction into a single one.
Finding the matrix of a loop is thus only possible when there is no nested
loops. When a condition occurs, we simply enumerate all the possible paths,
to which we associate their matrices. For example, with the first program of
5.2, we can see that the matrix C. A represents the loop, as applying it to X at
the beginning computes one whole step of the loop. Moreover there is only
one matrix as there is only one possible path.

In Section 5.3, we have shown that every invariant of this loop is exactly
the intersection of the eigenspaces union of the transposed matrices of each

82 Chapter 5. Eigenvectors as linear invariants of linear loops

while * do while * do
X = A.X; X = A.X;
X = C.X while * do
done X = B.X
done;
X = C.X
done

FIGURE 5.2: Invariants of the first loops are left-eigenvectors
of C.A, but the second loop cannot be represented as a single
matrix.

path, which is here the eigenspaces union of ((C.A)"). However, the sec-
ond program of Figure 5.2 cannot be treated as easily as the first one as,
considering non-deterministic conditions, we cannot determine how many
times B will be applied. The sequence of matrices associated to this loop is
({C.B".A}),en, i-e. each element of this sequence is a possible path the loop
can take. Thus the set of invariants for such loop is :

Inv(Prog) = ﬂ Inv(C.B".A)
ieN

This infinite intersection is naively impossible to compute, but the following
theorema allows us to simplify the computation.

Theorem 5 Let d the degree of the minimal polynomial of B. Then
d-1
Inv(Prog) = ﬂ Inv(C.B".A)
=0

Proof.

e Theideais to consider the minimal polynomial to stop iterating as soon

as we can. Let P(X) = Z p; X" the minimal polynomial of B. Without

losing generality, we w111 assume that p; =1

(0, X)=0 = (p,CAX)=0 (5.3)

is the definition of the invariant of C'A. As another path possible is
CBA, we also need to check for

(0. X)=0 = (p,CBAX)=0

and soon. Let P(n) =P(n — 1) A ({(¢, X) =0 = (¢, CB"A.X) =0).
The case P(0) is directly solved by Equation (5.3).

5.5. Thecase)\ =1 83

Pd—1)=({¢,X)=0 = /_\ (p,CB'A.X) =0)

The goal is to prove that P(d — 1) = P(d). Let p € {v : P(d — 1)}.
Then

(0, X)=0 = (p,CAX)=0
(0, X)=0 = (p,CBAX)=0

(p,X)=0 = (p,CB"'AX)=0

d-1
P(B) = 0 by definition, so B = Zo_piBi' Thus, (¢, CBIA.X) =

(¢, CQ(B)A.X) because (.,.) is bilinear ((a, b+ ¢) = {a, b)+ (a,)) By hy-
pothesis we know that if (¢, X) = 0 then for every i < d (o, CB'A.X) =
0, thus by bilinearity we also have

(p,CQ(B)AX) = i—pi@,CBiA.X)

(p,CR(B)AX) = 0

O

This theorem allows us to minimize the number of needed iterations of
the nested loop that are necessary for generating all invariants of the main
one. It relies on the knowledge of the minimal polynomial degree associated
to a matrix M € M, (K), which always divides the characteristic polynomial
of M whose degree is exactly n. In term of complexity, we know the inter-
section of the union of k vectorial spaces of dimension n costs O(k.n?). Thus,
the worst-case complexity of dealing with nested loops is O(k.n*).

5.5 Thecase)\ =1

5.5.1 The variable 1

We recall from Chapter 3 that affine transformations are linearizable. Every
affine constant a is replaced by the expression a* 1, where 1 is a new variable
always equal to 1. More than a syntactic sugar, the variable 1 brings inter-
esting properties over the kind of invariants we generate for an application
f. The vector eg such that (eg, X) = 1 is always an eigenvector associated
to the eigenvalue 1. Indeed, by definition f(1) = 1, hence f*(eq) = e;. For
example, let’s take the mapping f(z,y,zy, 1) = (2z, %y + 1, zy + 2x,1). This

84 Chapter 5. Eigenvectors as linear invariants of linear loops

mapping admits 3 eigenvalues : 2, 3 and 1. There exist two eigenvectors for
the eigenvalue 1 : (—2,0,1,0) and (0,0,0,1) = e;. We have then the semi-
invariant ky.(—2z 4+ zy) + ko = 0, or —2x + 2y = _k—’f? This implies that the
two parameters k; and k; can be reduced to only one parameter k = ’k—’j?,
which simplifies a lot the equation by providing a way to compute the pa-
rameter at the initial state if we know it. For our example, _k—’j? would be
—2Tinit + Tinit -Yinit, Where x;,;; and y,,;; are the initial values of = and y. More
generally, each eigenvector associated to 1 gives us an invariant ¢ that can be
rewritten as ¢(X) = k, where k is inferred from the initial value of the loop
variables.

5.5.2 Quantified expression of invariants as eigenvectors.

We can generalize this observation to eigenvectors associated to any eigen-
value. To illustrate this category, let us take as example f(z,y, 2) = (2z, 2y, 22).
Eigenvectors associated to 2 are e; = (1,0,0), e3 = (0,1,0) and e3 = (0,0, 1),
thus kix + koy + k32 = 0 is a semi invariant, for any %, k2 and k3 satisfying
the formula for the initial condition of the loop. However, if we try to set e.g.
ki1 = ky = 1, using « + y + kz = 0 as semi invariant, we won't be able to find
a proper invariant when y;,;; or z;,;; # 0 and z;,; = 0. Thus, in order to keep
the genericity of our formulas, we cannot afford to simplify the invariant as
easily as we can do for invariants associated to the eigenvalue 1. Namely
for every e;, we have to test whether (e;, X;,;) = 0. For each e; for which
this is the case, (e;, X) = 0 is itself an invariant if (e;, X;,;;) = 0. However,
if there exists an 7 such that (e;, X;,;:) # 0, then we can simplify the prob-
lem. For example, we assume that z;,;; # 0. Then k12 + koYinie + ksZinie =

0 < —k””:n'fw"’ = —ks. We know then that kiz + kyy = —k””;sz"’z is a
semi-invariant. By writing g(k1, ko) = W%W, we have
r = ¢g(1,0)z
{ y = ¢(0,1)z

As g is a linear application, these two invariants implies that V&1, ko, k2 +
koy = g(k1, k2)z is a semi-invariant.

Property 11 Let F a semi-invariant expressed as F =) k;e;.
i=0
If {eg, Xinit) # 0, then we have that

n

A(en) = -

=1

<€z‘, Xim't>

(€0, Xinit) (€0, X)) is an invariant < (F, X)) = 0

Proof.
(F, Xinit) =0 & <Z ieiaXim't> = —ko (€0, Xinit)

i=1
n

& > ki (es, Xinit) = —ko (e, Xinit)
=1
i: ki(ei, Xinit)

i=1 _
= (0, Xinit) /Co

5.5. Thecase)\ =1 85

o

ci{ei, Xinit)
Let g(c1,...,cn) = —=———— We have g(u;) = — &=t We note that g

. . <607Xinit> <60 X’L’ﬂl
is linear, thus :

<]:7 Xim't> =0 & g(’ﬁ; an) <€07Xim't> = Z k; <61'7Xim't>
=1
= Al X) = — {2524 (e, X))
by setting k; = 1 and k; =0forall j # .
Now to prove that th1s transformation does not make us lose precision,
we will construct F with the n equations.

If /\ ({ei, X) = g(u;) {eg, X)), then as g is a linear application we have that

Zl{: ei, X) = gk, ..., k) (€0, X)

We conclude by setting kq to —g(k1, ..., ky)

U

We are now able to use pairs of eigenvectors to express invariants by
knowing the initial condition.

5.5.3 Elevation degree.

To complete the technique, we will find a minimal degree for which we are
sure to find invariants when there exist at least 2 variables associated to the
eigenvalue 1 (not counting 1). Let A be a linear transformation matrix. First,
let us simplify the context by changing the base of the transformation:

Property 12 Let A and B two similar transformations, ® 4 and ® g the sets of their
linear invariants. ® 4 is isomorphic to p.

Proof. By property 4, we know that the union of any base of the eigenspaces
is sufficient to express all linear invariants of A. We will prove that each
eigenspace is isomorphic. If A and B are similar, there exists a P such that
A = P7'BP. Let A an eigenvalue of A.
A—Xld = P 'B.P-\Id
— PL.B.P— P L (PAd.P).P
— P~L.B.P— P L (\d).P
A—Ald = P~L(B—\d).P
Let ¢ € ker(A) a non null vector such that (A — Ald)p = 0. In other
words, ¢ is an eigenvector of A associated to A. As P is invertible, its kernel
is reduced to the null vector (as well as the kernel of P~!). By hypothesis, we
have that (P~'.(B — AId).P)y¢ = 0, therefore P.¢ € ker(B — \d).
Elements of ®4 are in bijection with elements of ¢z through P. [

Corollary. Working on the original base or on any base is equivalent when
searching for invariants. More specifically, let us focus on the Jordan normal
base of A. A is similar to J (ie. 3P.A = P~'JP), with

86 Chapter 5. Eigenvectors as linear invariants of linear loops

J 0 ... 0 A 1 ... 0
J = 0 e ,and J, = 0

T | T |

0 ... 0 Ji 0 ... 0 M\

Assume there exists ¢ such that \; = 1. The associated Jordan block, work-

ing on variables 27 = (z7]i, ..., a:j) is then

1 1 .. 0
TR |
0 ... 0 1
It is easy to compute the n'" power of J; = Id + N, where N is nilpotent.
= 0 . " : (5.4)
R | n
0 ... 0 1

where Pj(n) is a polynomial of degree j. Let’s assume without loss of
generality that xj’ = 1. Then, x‘j]"_l acts like a loop counter : it is incremented
by 1 after every step of the loop. Hence for every step, n = x;’i_l — Tinit, Where
Tinit 18 the initial value of :1:‘].]11. We can thus replace it in J" : every variable
is directly in relation with xf_l, which implies that every variable of z”/i are
polynomials of other variables, thus admit equivalent invariants.

To sum up, every variable associated to the eigenvalue 1 in a Jordan block
is directly in relation with the loop counter (cf equation (5.4)). This counter
appears in the loop when there exists a Jordan block of size 2. Therefore:

Property 13 Let A a linear transformation, .J its Jordan normal form. Let Ji, denote
the k™ Jordan block associated to the eigenvalue 1, Jy, its i'" line (starting from the
bottom). Let xy,; the i'" variable of the Jordan block J, (also starting from the bottom).

e Forevery k. K . c, xy; — x1; = cis a semi-invariant of J
) ? K3 1

o If there exists a Jordan block Jy, of size 3 or more, then there exists a semi-
invariant of degree m + 1 where m is the size of the largest Jordan block.

Proof.

e We proceed by induction on the position on the Jordan block. From
equation (5.4), we know that z;; = 1 for all k. Therefore for all %,
Tp; = 1, 1S a semi-invariant of J.

e Let us take a Jordan block J;. After n iterations, the variable {x;}; will
be associated to a polynomial of degree at most i + 1 (cf equation (5.4)).
Indeed, the i*" line contains a polynomial of degree at most i in n (the
loop counter), and each coefficient is multiplied by a variable the matrix
is applied to a variable vector, which returns a polynomial of degree

5.6. Inequalities 87

(x,v) = (non_det(-1,1),non_det(-1,1));
while (%) do

(x,v) = (0.68 x (x-y), 0.68 * (xty));
done

FIGURE 5.3: Simple affine loop

i + 1. If the Jordan block has a size of 3 or more, this loop counter
automatically appears as the variable {z},. Therefore, it is possible to
replace every occurence of the loop counters in the polynomial relations

by {z}o.

O

Variables in the Jordan normal form of a linear transformation represent
linear combinations of variables in the original form of the matrix. Therefore,
this property proves the existence of polynomial invariants up to a calculable
bound, i.e. the maximal size of the Jordan blocks. In the base of Jordan, this
property also explicits invariant relations between and beside blocks.

5.6 Inequalities

5.6.1 Convergence and divergence

Being an inductive invariant requires for a formula F' to be true after an it-
eration of the loop under the hypothesis that F' holds before the iteration.
The left eigenspace of a linear transformation (i.e. the eigenspace of the dual
transformation) is exactly its set of exact invariants (cf Definition 21). So far,
we only studied equality relations between variables. Let us introduce now
the concept of convergent and divergent invariants:

Definition 24 Convergence
¢ € K" is a convergent inductive invariant for a linear mapping f iff

VX e K" VE e K, | (0, X) | <k=|{o, f(X)]| <k (5.5)

Definition 25 Divergence
¢ € K" is a divergent inductive invariant for a linear mapping f iff

VX e K" VE e K[(p, X) [Z k= [(p, (X)) [>k (5.6)

5.6.2 Convergent invariants and eigenvectors

By linear algebra

(o, X) | <k = [(p), X)| <k (5.7)

88 Chapter 5. Eigenvectors as linear invariants of linear loops

is strictly equivalent to the Definition 24 of convergent semi-invariants. The
set of X such that | (p, X)| < k represent what we call a domain described by
¢, i.e. a polynomial relation. The previous constraint specify that the domain
described by ¢ is stable by f.

The loop in figure 5.3 admits the invariant 2%+ y* < 2, a domain described
by ¢ = (0,0,0,1,0,1) in the base (1, x, zy, 2, y, y2)> where z, represents x?,
zy represents z * y and y» represents y?. As ¢ is a left-eigenvector of f, it is
an exact semi-invariant of the loop. Therefore, it generates a vectorial space
of exact semi-invariants I = {k.(z* + y?) = 0 |, k € K}, which is a very poor
result as z? + y? is constant only if it starts at 0 (otherwise £ = 0 and we don’t
know anything about 22 +y?). Let us focus now on the eigenvalue associated
to ¢ on f*, which is 0.9248. We can replace | (f*(¢), X) | by |Al.| (¢, X) | in
(5.7), which returns :

[, XD | < k= [AL[{0, X} [<k

As || < 1, the vector ¢ satisfies the equation, thus ¢ is a convergent semi-
invariant. Knowing the maximal initial value of z* + y* allows to determine
the value of k, which is 2. More generally, we have :

Property 14 ¢ is a convergent semi-invariant < 3\, |A| < 1, f*(p) = A.p

Proof. If |\| < 1, then ¢ is a convergent semi-invariant (see introduction of
section 5.6). We will prove the following Lemma:

Lemma 8 (Vk,|(p, X)| < k=|(p, f(X))]| < k)= ¢isa left-eigenvector of f.

Proof. With & = 0, we end up with the exact semi-invariant of Definition
21, whose solutions are eigenvectors of f* by Theorem 4. [

As the exact semi-invariants set of f is the union of the eigenspaces of f*,
we can deduce that this set is a superset of all the relations satisfying (5.5).
Moreover by Lemma 8, we have

(e, X0l <k = o, fXNTI<h) = (<o, X >[<k= M <p, X >]<k)

For k =| < ¢, X > |itis trueif and only if |A\| < 1. O

Divergent invariants and eigenvectors The same reasoning applies for the
generation of divergent invariants. For example, an eigenvalue A such that
|A] > 1 associated to a semi-invariant ¢ implies that | (¢, X) | > k is an induc-
tive invariant. Thus, we also have

Property 15 3\, |\ > 1, f*(¢) = .o = ¢ is a divergent semi-invariant

2The representation of monomials of variables in a linear transformation refers to the
elevation process introduced in Chapter 3, Section 3.1.

5.7. Non determinism 89

while (%) do
N = non _det(-0.1,0.1);
(x,y) = (0.68 % (x-y) + N, \
0.68 (x+y) + N);
done

FIGURE 5.4: Non deterministic variant of the Figure 5.3

Proof. If there exists A such that f*(p) = \.p, then we have that

<o, X>| 2 k=< f(X)>]| 2k

is equivalent to

| <o, X>| 2 k=M<, X>| >k

If we also have that |\| > 1, then the previous equation is true. [J

Note that this is only an implication this time. For example, the trans-
formation f(z,1) = (x + 1,1) admits = > z;,; as a divergent invariant but
the only left eigenvector of f is (0, 1), which correspond to the invariant "1 is
constant". Moreover, not all invariants of the form P(X) < k are generated
: the loop with the only assignment z = = — 1 admits the (non-convergent)
invariant z < ;. This invariant does not enter the scope of our setting as
|z| < xing is false for 2x;,; + 1 iterations of z = = — 1.

5.7 Non determinism

5.7.1 Non deterministic transformations

Some programs depend on inputs given all along their execution, for ex-
ample linear filters. More generally, an important part of program analysis
consists in studying non-deterministic assignments. As an example let us
consider the program in figure 5.4, a slightly modified version of the pro-
gram in figure 5.3. Our previous reasoning is not applicable now because,
due to the non-determinism of N, the loop is no longer a linear mapping.

Idea. Intuitively, we will represent this loop by a matrix parametrized by
N. For that purpose we use the concept of abstract mapping introduced
in [JSS14].

Definition 26 An abstract linear mapping f : K¢ — M, (K) is a mapping asso-
ciating a vector N € K to a matrix. We call f* the dual mapping of f (i.e. the
mapping such that f*(N) = (f(N))"). The expression of the parametrized matrix
with respect to an abstract linear mapping will be called the abstract matrix.

90 Chapter 5. Eigenvectors as linear invariants of linear loops

In our setting, the parameters are the non-deterministic values. For ex-
ample, the previous loop can be represented by the abstract matrix My :

1 0 0 0 0 0
N 0.68 0 0 —0.68 0
N? 136N 0 0.462 0 —0.462
N? 1.36N 0.925 0.462 —1.36N 0.462
N 0.68 0 0 0.68 0

N? 1.36N 0.925 0.462 1.36N 0.462

Remark. Similarly to deterministic solvable mappings defined in Chap-
ter 3, non deterministic solvable mappings can be linearized to an abstract
matrix. By considering non deterministic parameters as constants, the prob-
lem is reduced to the linearization of deterministic solvable mappings.

5.7.2 Generation of a candidate invariant

We have shown in section 5.6 that M, admits the invariant e = (0,0,0,1,0,1)
associated to the eigenvalue)\, = 0.9248. By decomposing My as the sum of
MO and (MN — Mo), we also have Go.MN = eo.M() +€0.(MN — M[)) =)\0.60 +5N,
where 6 = eo.(My — My) = (2N?,2.72N,0,0,0,0). As the eigenvalue)\, is
smaller than 1, we are looking for relations ¢ such that VX, | (¢, X)| < k =
| (ME.¢, X) | < k. We will call e a candidate invariant for My. For e, to be a
proper invariant for this transformation, the following property must hold:

VX, | (eo, X) | <k = [Ao (eo, X) + (60, X) | <k (5.8)

Intuitively, multiplying (ey, X) by Ay reduces its norm strictly under k. We
need to make sure that adding (4{’, X') does not contradict the induction cri-
terion by increasing the result over k. The variables of the program depend
on k, as does (&), X). If it increases faster than |\, (o, X) | when £ is in-
creased, then no value of £ will make the candidate invariant inductive. In
particular, if (e, X) is a polynomial P of degree d, we need to be able to give
an upper bound to (&', X) knowing that | P(X)| < k. If the degree of (§)', X)
is strictly smaller than d, then it will grow asymptotically slower than |P(X)|,
thus for a big enough £ the induction criterion will be respected.

Property 16
(VX [eo, X) | < b= [(0, X) [< (1= [Xo]) k) = (5.9)

| (e0, X) | < k is an invariant of the loop.

Proof. We work with the hypothesis VX, | (ey, X) | < k.

5.7. Non determinism 91

€00, X) 1< (= haDk = {50 X) [+ [Nk <k
= (00, X) | + Ao {eo, X) | < &
= [0, X) + o e0, X) [<k
U
In our example, (), X) = 2.72 x N x x + 2 x N2. The polynomial z is of
degree 1 while < ¢y, X >= 2* + y? is of degree 2. We need to find a k such

that
—0.0752 %k < 2.72% Nz + 2% N? < 0.0752 * k (5.10)

5.7.3 Optimizing expressions

We will now maximize and minimize 2.72 * N % 2 + 2 * N?, knowing that
2?+y* < kand —0.1 < N < 0.1. Solving this problem is very close to solving
a constrained polynomial optimization (CPO) problem [Ber14]. CPO tech-
niques provide ways to find values minimizing and maximizing expressions
under a set of inequalities constraints. The main issue is related to the param-
eter k that must be known in order to use CPO directly. This Chapter will not
investigate how CPO works in detail, but how we can reduce the problem of
tinding an optimal & to the CPO problem.

Assuming we have a function min computing the minimum, if it exists,
of an expression under polynomial constraints, the algorithm in Figure 5.5
finds a value of k and refines it to get as small as possible. The idea is to find
k by dichotomy.

e If k£ doesn’t satisfy the constraints, we try a bigger one.

e If we find a & satisfying the two conditions, then it is a potential candi-
date. We can still try to refine it by searching for a smaller k.

We can improve this algorithm by guessing an upper value of k instead of
taking an arbitrary maximal value MAX_INT. For our example, we started at
k = 50 and found that k = 14.9 respects all the constraints.

o *+1y? <149 = |z| <39
e |[N| <0.1
o 272xzx N+2xN? <1.08 and k* (1 —|\]) = 1.12.

5.74 Convergence

Note however that the existence of a k satisfying (5.10) is not guaranteed.
For example, the set S = {(z,y,N)[z* + 4> < kA -01 < N < 0.1} isa
compact set for any value of k, which means that x, y and N have maximum
and minimum values. This implies the existence of a lower and an upper

92

Chapter 5. Eigenvectors as linear invariants of linear loops

Data:

A : float

(@ : objective function

P : polynomial constraint

non_det_c : non deterministic constraints

N :int

Result: k such that VX, P(X) < k= f(X) < (1 —|A]).k
low_k =0;

up_k = MAX_INT;

k=MAX_INT / 2;

i=0;
while i<N A up_k # MAX_INT do
1=1+1;

Pk = function (x — P(x) + k);

min = min(Q,[Pk] U non_det_c);

max = min(-1*Q,[Pk] U non_det_c);

if min > (-1+|\|) * k and max < (1-|\|)*k then

| up_k=k;
else

| low_k=k;
end

/* Check the overflow for the next statement ! */
k = (low_k +up_k) / 2;
end

FIGURE 5.5: Dichotomy search of a k satisfying the condition
of Property 16

5.7. Non determinism 93

bound for every expression composed with z, y and N, but the value of those
expressions may be always higher than & such as for 2* 4+ y* + 1 bounded by
k+ 1.

Property 17 Let P and () two polynomials and M > 0 € R.

I M, then th ts k € R such that for all k' >
f\|X||Ln+ |P(X)| < en there exists k € R™ such that for a

IP(X)| <K = |Q(X)| < MK

Proof. If ”X|l|im E 2 X)\ < M, then there exists X’ such that for all X with
—+00

| X']] < || X ||, we have |%| < M We will first prove this property for || X || <
|X7[l, then for || X[} > [.X[.

e For X such that || X|| < ||X’||, both P and @ are bounded. Therefore,
there exists a positive k such that |[P(X)| < kand |Q(X)| < M.k.

e Now for X such that || X|| < || X’||, let us assume that |P(X)| < k. Then
we have that for all &

O
By taking M = (1 — |\o|), this theorem gives us a sufficient condition to
guarantee the convergence of the algorithm in figure 5.5.

Corollary. If the objective has a lower degree in the deterministic variables than
the candidate invariant, then the algorithm converges. If it has the same degree, then
it depends on the main coefficients.

As we are dealing with two polynomials P and @, then if P (the candi-
date invariant) has a higher degree than () (the objective function) in all its
variables, the limit of 25)) will be 0, which is enough to ensure the conver-
gence of the method. If we come back to the objective function for the loop
of figure 5.3, Q(X) = 2.72.2.N + 2.N? is a polynomial of degree 1 in and 0
|Q (X.N) | = 0 and we can be sure that the optimization will

iny, thus lim
| X || =00
converge.

On the other hand, if we have X = (z,y), P(X) = 2? + y* and Q(X,N) =
10.N (2% +y*+1), with |[N| < 0.1, the optimization procedure may not produce
a result by theorem 17 because lim \Q](f(()’(];[)\ = 10N is higher than 1 — ||

| X || =00
for N =0.1.

5.7.5 Initial state

The knowledge of the initial state is not one of our hypotheses yet, but the
previous theorem provides the necessary information we need to treat the
case where the initial state is strictly higher than the minimal £ we found.
The previous theorem tells us that there exists a £ such that for all £’ > &k,

94 Chapter 5. Eigenvectors as linear invariants of linear loops

k' is a solution to the optimization problem. Our optimization algorithm is
searching for a value of k for which the set is inductive, though, and this
solution may be only local : there may be a £’ > k which is not a solution of
the optimization procedure. If the value of P(X,,;) is strictly higher than &,
there are two possibilities :

e it satisfies the objective (5.10), optimization is then not necessary as k =
P(Xiyit) is correct, and we directly have a solution.

e it doesn’t satisfy the objective, we have to find a k¥ > P(X,;;) satisfying
it.

In both cases, we can enhance the optimization algorithm by first testing
the objective (5.10) with k& = P(Xj,;). If it does not respect the objective,
then starting the dichotomy with low_k = P(X,,;) will return a solution
(guaranteed by the property 17) strictly higher than P(X,;).

95

Chapter 6

How precise can invariants be ?

Contents

6.1 The OrbitProblem 95
6.1.1 The Kannan-Lipton Orbit problem 95
6.1.2 Eigenvectors as certificates 96
6.2 Certificate sets of the rational Orbit Problem 97
6.2.1 Case 2: there exist eigenvalues Aand [A| # 1. 99

6.2.2 Case 3: all eigenvalues have a modulus equal to 1
and the matrix is not diagonalisable 102

6.2.3 Case 4: eigenvalues all have a modulus equal to 1
and the transformation is diagonalizable 104

6.3 General existence of a certificate for the integer Orbit Prob-
5 106
6.4 Perspectives i i it e 107

Requirements: Linear algebra (Section 2.1)

Generating invariants is not a goal in itself, but a mean to prove the cor-
rectness of a program. Chapter 5 gave a new characterization of linear loop
invariants, and a simple algorithm to generate them. But these invariants are
generated out of any proof context, and they are sometimes insufficient to
prove the correctness of a program. Though Theorem 4 states that eigenvec-
tors are exactly invariants of linear loops, it is not clear what is achievable or
not with them. We will show in this Chapter a possible application of eigen-
vectors as invariants for the Kannan-Lipton Orbit problem [KL80; KL86]. This
chapter is based on work presented on [Oli+18].

6.1 The Orbit Problem

6.1.1 The Kannan-Lipton Orbit problem

The Kannan-Lipton Orbit problem can be stated as follows :

Given a square matrix A € M;(Q) of size d and
two vectors X, Y € Q¢, determine if there exists n such that A”X =Y.

96 Chapter 6. How precise can invariants be ?

This problem is decidable in polynomial time [KL86]. In case an instance
of the problem has no solution (in other words, Y is not reachable from X),
[Fij+17] studies the existence of non-reachability semialgebraic certificates
for a given instance of the Orbit Problem where Y is not reachable. Semi-
algebraic certificates are sets described by conjunctions and disjunctions of
polynomial inequalities with integer coefficients that include the reachable
set of states but not the objective Y. Those certificates allow to quickly prove
the non-reachability of the given vector Y and all vectors outside of the cer-
tificate.

[Fij+17] concludes on the existence of such certificates under simple hy-
potheses on the eigenvalue decomposition of A. To sum up, if there exist
eigenvalues with modulus different than 1 or if the transformation is not
diagonalizable, there exists certificates of non reachability that involves in-
equalities of polynomials. Otherwise, it depends if the objective belong to a
certain set described by equalities of polynomials.

These hypotheses are surprisingly similar to the hypotheses of PILA as,
when || # 1, left-eigenvectors represent polynomial inequality invariants
while [Fij+17] uses certificates defined by polynomial inequalities. Eigenvec-
tors were sometimes unable to infer invariants, especially when the studied
matrix was non-diagonalizable with all its eigenvalues A such that |A\| = 1,
while [Fij+17] was able to infer certificates.

Interests of eigenvectors. In terms of complexity, eigenvectors and the ar-
gument of [Fij+17] using the Jordan Normal form of the matrix are equiva-
lent, as the Jordan Normal form of a matrix can be calculated in polynomial
time given eigenvectors and generalized eigenvectors. It is however neces-
sary to compute all eigenvectors and generalized eigenvectors of a transformation
to get the Jordan Normal form, which slows the analysis (this is especially
true for generalized eigenvector that are harder to calculate).

6.1.2 Eigenvectors as certificates

In this Chapter, we investigate the connections between the construction of
certificates for the Orbit Problem and the invariants characterization of Chap-
ter 5. We show that for an instance of the Orbit Problem for the transforma-
tion A of dimension n, the problem of generating a certificate can be reduced
to the search of eigenvectors. Particularly,

e in the first hypothesis, there exists a linear transformation of dimension
O(n?) (resp. O(2")) computing an equivalent image of A such that its
eigenvectors can be used as real certificates (resp. semialgebraic certifi-
cates) for the non reachability of the given instance;

e in the second hypothesis, there exists a linear transformation of dimen-
sion O(n?) (resp. O(2")) computing an equivalent image of A such that
its generalized eigenvectors can be used as real certificates (resp. semial-
gebraic certificates) for the non reachability of the given instance;

6.2. Certificate sets of the rational Orbit Problem 97

e in a more general case, a semialgebraic certificate for the Orbit Problem
in Z always exists.

Remark. It is worth noting that there exists no proof about the decidability
of the existence of linear certificates directly on the transformation A.

6.2 Certificate sets of the rational Orbit Problem

This chapter focuses on A C C, the field of algebraic numbers. Elements
of A are roots of polynomials with integer coefficients. Indeed, the linear
transformations we consider are in Q7 — Q¢, thus their eigenvalues (as
roots of the characteristic polynomial) are in A. Let f : Q¢ — Q? be a
linear transformation. We refer to the Orbit Problem of A; with an initial
state X € Q7 and an objective state Y € Q% as O(A, X,Y). In other words,
O(A,X,Y) = (In € NY = A"X). As we are studying non-reachability, every
instance of the problem is assumed to be false unless stated otherwise.

Definition 27 A non-reachability certificate or just certificate is a pair (N, P) €
N x P(Q?) of an instance O(A, X,Y) such that :

e VneNn<N=A"X#Y

e VneNn>N=A"XeP

e Y &P

N is called the certificate index and P the certificate set.

When the certificate set is described by a combination of linear (resp. polyno-
mial) relations between variables, the certificate is called linear (resp. poly-
nomial). Irrational, semialgebraic and rational certificates are linear or poly-
nomial certificates whose coefficients are respectively irrationals, algebraic
integers or rationals.

Semi-algebraic certificates, are always equivalent to rational certificates.
Indeed, every coefficient ¢, € A is nullified by a polynomial () with integer
coefficients. It is then possible to replace ¢; by a free variable that is con-
strained to be a root of Q. For example, P = {z|v2z < 2} = {z[3y.y? =
2Ny > 0Ayx <2}

Remarks. This definition of certificates is slightly different than the notion
of certificates of [Fij+17] as it does not require an inductivity criterion. We
have choosen this notation so as to simplify the notations.

The certificate sets we generate are future invariants of the transformation,
in the sense that f"(X) eventually reaches the set for some n and always
remains in it, whereas Y is outside the invariant. Different choices of X and
Y may delay the number of iterations needed to reach it. The certificate index
solves this issue by expressing the number of iterations necessary for f"(X)

98 Chapter 6. How precise can invariants be ?

to reach the certificate set. This information is crucial for the practical use of
certificates, as a solver can use it to shorten its analysis.

The existence of such a pair implies the non reachability of Y as A" X is
either different from Y or belongs to a set to which Y does not. For exam-
ple, if Y does not belong to the reachable set of states R = {A"X | n > 0},
the pair (0, R) is a certificate. However, typically, R can not be described
in a non-enumerative way. We are interested in simple certificates, i.e. where
proving that the objective Y does not belong to the reachable set of states is
straightforward. That means that membership in P should be easy to solve.
For example, let R’ = {(vy,...,v,)|v1 + v2 = 0} and assume R C R'. Testing
whether Y is in R’ or not is easy as this set is described by a linear combina-
tion of variables. If Y ¢ R/, then R’ is generally a better (simpler) certificate
set than R. On the other hand, finding a good certificate index may be harder.

Generation of certificates. The decidability of the existence or the non-
existence of semialgebraic certificates for the Orbit Problem for rational linear
transformations is proven in [Fij+17]. It classifies four categories of rational
linear transformations f : Q¢ — Q%

e f admits null eigenvalues;
e f has at least an eigenvalue of modulus strictly greater or less than 1;
e f hasall its eigenvalues of modulus 1, but it is not diagonalisable;

e [has all its eigenvalue of modulus 1 and is diagonalisable.

In the second and third case, linear transformations always admit a non
reachability certificate if the Orbit problem has no solution. The intuition
behind this result is to consider the Jordan normal form f; of the transfor-
mation f. Let V be a vector of variables and V; the vector of variables in the
base of J. In this form, there exists a variable v (representing a linear combi-
nation of variables of V) such that f;(V;)|, = Av;. Applied k times, the new
value of vy is Afv;, which diverges towards infinity or converges towards 0
when |\| # 1. Checking if a value y is reachable or not can then be done by
checking if there exists k € N such that *v; = y. We are now left to compute
those certificates.

Case 1: there exist null eigenvalues

This particular case leads to degenerate instances of the orbit problem. When
a linear transformation admits a null eigenvalue, there exists a linear combi-
nation of variables that is always null. In other words, there exists a variable
v that can be expressed as a linear combination of the other variables. There-
fore, this variable doesn’t provide any useful information on the transforma-
tion other than an easily checkable constraint on v. If the linear constraint
is satisfied, we get rid of this case by using Lemma 4 of [Fij+17], stating the
following;:

6.2. Certificate sets of the rational Orbit Problem 99

The problem of generating non-reachability certificates for an orbit in-
stance O(A, X,Y') can be reduced to the problem of generating reachability
certificates for an orbit instance O(A’, X', Y’) where A’ is invertible.

6.2.1 Case 2: there exist eigenvalues) and |\| # 1.
Real eigenvalues.

The key of the following property lies in [pilat_nd_long], stating that \-left
eigenvectors ¢ of a linear transformation f are its invariants. More precisely,
we can see that if ¢ is a left-eigenvector of a linear transformation A, then by
definition the following holds:

Yo € K%, (p, Av) = X (p,v) (6.1)

If [A| > 1 (resp. |A| < 1), then the sequence (| (¢, A™v) |) (for n € N) is strictly
increasing (resp. strictly decreasing),

Property 18 Let A € My(Q) a linear transformation and O(A, X,Y) an instance
of the Orbit problem with no solution. Searching for a non-reachability certificate of
an instance of the Orbit problem when A admits real eigenvalues \ such that |\| # 0
and |A| # 1 can be reduced to computing the eigenvector decomposition of A.

More precisely, if there exists a A-left-eigenvector of A with |\| # 0 and || # 1,
then there necessarily exists N such that the couple (N, P) defined as follows is a
non-reachability certificate of O(A, X,Y).

1. If | (¢, X) | #0and | (¢, Y)| =0,then N =0and P = {v : (p,v) # 0}
2. If|{p, X) | =0and | (p,Y)| #0,then N =0and P = {v : (p,v) = 0}.

3. 0f (0, X) | # 0and | (p,Y)| # 0, N = max(1, | 2UeXiinlleXi) 4)

and
o IfIN > L then P ={v: | {,0) | > |\ (p.Y) [}
o If [N <L then P={v:|({p,v)| <[\A(p,Y)]}

4. Otherwise, if d > 1 there exist a transformation B € My_1(Q) such that the
problem of finding a certificate for O(A, X,Y') can be reduced to the problem
of finding a certificate for O(B, X,Y').

Ifd =1, then O(A, X,Y) has a solution.

The certificate is semi-linear iff A € Q.

Proof. Let ¢ be a left-eigenvector of A associated to the eigenvalue \. We
know that for all v, (p,v) = k = (p, Av) = \.k. Let U,, = | (p, A" X) | be the
module of the n-th reachable state from X. If |\| < 1 (resp. |A| > 1), then (U,,)
is strictly decreasing (resp. strictly increasing).

100 Chapter 6. How precise can invariants be ?

1. Let k, = | (p,v) |. If kx # 0 and ky = 0, then the sequence (U,,) never
reaches ky, as for all n, U,, # 0. In other words, |U,| > 0 for all n € N.
Then it is clear that P = {X : | (p, X)| # 0} is a valid certificate set of
index N = 0.

2. Similarly, if kxy = 0and ky # 0,then P = {X : | (p, X) | =0} and N = 0.

3. Assume now that kxy # 0 and ky # 0. If kx < ky and |\ < 1 (re-
spectively kx > ky and |A| > 1), then (1,{v : |(p,v)| < |M.ky}) is
a valid certificate set (respectively (1,{v : | (p,v)| = |A.ky})). Other-
wise, let us assume |\ < 1 and kx > ky. U, is strictly decreasing,
so there exist a NV such that Uy > ky and Uny1 < ky. This implies
that Y can only be reachable after a finite number of iterations N. We
also have that Uy, > |A|.ky and Uy < |[A|.ky. If foralln < N + 1,
Y # A"X, we can define P = {v : | (p,v) | < |\|.ky}, and obtain Y ¢ P
and {ANT*"X|n € N} C P. Therefore, the couple (N + 1,P) is a
non-reachability certificate of O(A, X,Y’). A similar proof for [A\| > 1
is valid as the sequence U,, is now strictly increasing and the couple
(N, {| (¢, X) | = |\.ky}) is the corresponding certificate.

We will now study the exact value of N. If Y is reachable, then there
exists a unique value of N such that |A\|"|{(p, X)| = ky. This value
is precisely l”(‘@’yzg(_li"‘)('“p’)(ﬂ). If for every value of n < N, Y is not
reached and as Y noes not belong to the certificate set P, the couple

(max(0, | N]), P) is a non-reachability certificate.

4. Assume ky = ky = 0. In this case for every n, (¢, A”X) = 0, thus the
linear combination of variables ¢.X is always equal to 0. There exists
a base B of the transformation in which there exists a variable v which
remains null for every iteration of the transformation. In other words,
there exist A, Q such that A’ = Q. A.Q~".

Assume d > 1 and let B = A[v\ and Q' = Q. the transformations re-

stricted to all variables but v (by removing both the associated line and
column). Finding a certificate for A is reduced to finding a certificate
for B=Q'B'Q'.

If d = 1 and there exist a linear combination ¢ of X such that (¢, X) =0,
then X = 0. Similarly, Y = 0.

Concerning the linearity of the certificate, if A € Q, then every coefficient
of ¢ also belongs to Q. Indeed A has rational coefficients, so does ¢ A = A..
Similarly, if ¢ has rational coefficients, ¢.A = X.¢ also does.

In the case of kx # 0 and ky # 0, we also have to get rid of the absolute
value around (p, v) in the definition of the certificate set. If |\| > 1, the cer-
tificate set {v : ((¢,v) = |A{(p,Y)|) A ({p,v) < —|{(p,Y)|)} is semilinear. A
similar set can be found for |A\| < 1.

O

6.2. Certificate sets of the rational Orbit Problem 101

Certificate index.

Being able to minimize the number of necessary unrollings to prove the non
reachability is useful. In this regard, notice that the certificate index value N
of Property ?? is such that for every n < N, (p, A"X) ¢ P. In other words, it
is minimal for its associated certificate set.

Example. Consider the Orbit Problem O(A, X,Y") with
0 3 00
. -3 3 10
subsubsection A = 00 2 1
1 1 01

A admits two real eigenvalues \; ~ 0.642 and A\, ~ 2.48 respectively as-
sociated to the left-eigenvectors ¢, = (—0.522,0.355, —0.261,0.73) and ¢, =
(0.231, —0.36, —0.749, —0.506). This is enough to build two preliminary cer-
tificate sets that only depend on Y : P, = {v.|(p1,v) | < M.|{(¢1,Y) |} and
Py = {v.| (p2,0) | = Aa.| (p2,Y) |}. Those can be used for any initial valuation
of X.

Let'snow set X = (1,1,1,1) and Y = (-9, 7,28, 7). We have then

e (v1,X)=0.302and (p;,Y) =0.015,s0 N = 7.
o (3, X)=—1384and (p2,Y) = —24.073,s0 N = 4.

We can easily verify that for any n < 7, A”X # Y/, so the certificates (7,)
and (4, P») are sufficient to prove the non reachability of Y.

Complex eigenvalues.

The treatment of complex eigenvalues can be reduced to the Case 1 by the
elevation method described in Chapter 3. Let us recall the idea of elevation. If
variables evolves linearly (or affinely) then any monomial of those variables
also evolves linearly (or affinely). For example, given f(z) = = + 1, then
the new value of 2? after application of f is (z + 1) = 2% + 2z + 1, which
is an affine combination of 2%, z and 1. f can be elevated to the degree 2 by
expressing this new monomial : fy(z2,2) = (22 + 22 + 1,2 + 1). We denote
U} (A) a transformation A elevated to the degree k and, by extension, U (v) a
vector v elevated to the degree k.

A and ¥ ,(A) represents the same application, except that ¥,(A) also cal-
culates monomial values of variables manipulated by A. Hence, certificates
of O(V4(A), ¥u(X), ¥,y (Y)) are also certificates for O(A4, X,Y),

The product of all eigenvalues is the determinant of the transformation,
which is by construction a rational. By Property 8, the elevation to the degree
n where n is the size of the matrix admits at least one rational eigenvalue. We
can deduce from this the following theorem.

Theorem 6 Let O(A, X,Y') be an unsatisfiable instance of the Orbit problem with
A € M,,(Q) admitting at least one eigenvalue A € C such that |\| # 0and |\| # 1.
Then left eigenvectors of ¥ ,(A) provide :

102 Chapter 6. How precise can invariants be ?

o real linear semialgebraic certificates for d = 1 (V(A) = A) if there exist real
eigenvalues;

o real semialgebraic certificates of degree 2 for d = 2 if there exist complex eigen-
values;

e at least one rational certificate of degree n for d = n if |det(A)| # 1.

Proof. We treat each case separately:
e The case where A admits real eigenvalues is treated by Property 18;

e If A admits a complex eigenvalue)\, A also admits its conjugate)\ as
eigenvalue. By Property 8, U5(A) admits A\.\ as a real eigenvalue, which
is treated by Property 18;

e The product of all eigenvalues of a rational matrix is rational. As such,
VU, necessarily admit a rational eigenvalue which implies the existence
of an associated rational eigenvector that can be used, according to
Property 18, as a certificate.

0J

Remark. The image of A € M, (K) is a projection of the image of W;(A)
for any £, and semialgebraic certificates of A are, by extension, semilinear
certificates of ¥,,(A). The size of W, (A) is (“t*), which is O(d?) when k = 2
and O(d?) when d = k. An eigenvector computation has a polynomial time
complexity (slightly better than O(d?)). The two first cases of Theorem 6 are
thus computable in polynomial time in the number of variables.

Example. The matrix from the previous example admits two complex eigen-
value \ ~ 1.439 + 2.712i and A\. As A\ ~ 9.425, it also admits a polynomial
invariant ¢. As we know that (¢, X') = 0.220 and (p, Y) = 195.738, the asso-
ciated index is 4.

6.2.2 Case 3: all eigenvalues have a modulus equal to 1 and
the matrix is not diagonalisable

Real eigenvalues.

This case is trickier as eigenvectors do not give information about the conver-
gence or the divergence of the linear combination of variables they represent.
For example, let us study the orbit problem O(A, X,Y) where A is the ma-
trix associated with the mapping f(z,1) = (z +2x*1,1), X = (0,1) and
Y = (5,1). xy is odd, thus Y is not reachable. f admits only ¢ = (0, 1) as left-
eigenvector associated to the eigenvalue A = 1, meaning that ((0, 1), (z,1)) =
((0,1), f(z,1)) for any z. As ((0,1), (z,1)) = 1, we are left with the invariant
= 1. This invariant is clearly insufficient to prove that Y is not reachable.

6.2. Certificate sets of the rational Orbit Problem 103

f thankfully admits a generalized left-eigenvector ;1 = (3, 1) associated to
1. More precisely, pA = p + ¢, which implies that A" X = (¢ + ng).X. In
other words, we have 1z + 1 = fzx + 1+ n which simplifies into 32 = n. The
couple (3,{(z,y) : In > 3, s = n}) is a non reachability certificate.

Property 19 Let A anon-diagonalisable linear transformation and {e;};n N linked
1-left eigenvectors' (i.e. egA = egand for 0 < i < N, e;A = e; + €;_1).

Then for all i < N, (e;A*, X)) = P;(k, X), where P;(k,X) is a polynomial of
degree i in the variable k and 1 in each variable of X.

Proof. Let {e;};<n afamily of N linked 1-left eigenvectors. We can compute
P;(k,X) by induction on i. For i = 0, e, verifies egA* = ey = (Men_i_1.
Assume now ¢;AF = P,(k) are vectors of polynomials of degree at most i.
Then, we have ;1. A*! = (e;41 + €;).A* = e;,1 A% + Pi(k) Now, let U,,,, =

k
Ui + P,(n). Then for anu Uy, U, = Uy +) Pi(l) is a vector of polynomials of
=0

degree at most ¢ + 1.

O

As every polynomial eventually diverges, there exists a linear combina-
tion of variables of X that diverges. This is enough to certify the non reach-
ability of the Orbit Problem for non diagonalizable matrices with the eigenvalue
A=1

Remark. Even if the first eigenvector is enough to represent a non-reachability
certificate, every generalized eigenvector also can. By Property 19, the value
of the linear combination described by a generalized eigenvector ¢ evolves
polynomially, thus it eventually always decrease or increase (after the high-
est root of its derivate). That is why for a given objective Y there exist a finite
number of n such that |pY| < |pA"X|, thus after this n, {v : |pv| > |¢Y|} is a
certificate.

Complex eigenvalues.

If A € C, we will use the same trick we used for complex eigenvalues of
Case 2. As for every complex eigenvalue) of A, A is also an eigenvalue, then
A.A = 11is an eigenvalue of V5(A) by Property 8. Thus :

Theorem 7 Let O(A, X,Y) be a non satisfiable instance of the Orbit Problem such
that for all eigenvalue X of A, |\| = 1 and A is not diagonalisable. Then there
exist a family of linked 1-left-eigenvectors F = {ey, ..., e} of Wo(A) such that for
all 1 < i < n, Qi(n) = (e;, Vao(A)" Vo (X)) is a polynomial and (N, P) is a non
reachability certificate with:

o N = |maz({0} U{z € R.Qi(z) = (e;, Us(A*)To(Y))})]

o P={v:|{e;Vs(A)"WUs(v))| = |Q:(N)|}

IThe existence of such a family with N > 1 is guaranteed by the non diagonalisability of
A.

104 Chapter 6. How precise can invariants be ?

2
1 /
k

pl123446

FIGURE 6.1: Graph of the polynomial y = 3k* — 5k — 1

Proof. Let O(A, X,Y) be an instance of the Orbit Problem. We will re-
duce the problem to the case where A has positive rational eigenvalues, i.e.
A = 1 and A admits a family F of linked left-eigenvectors of size |F| > 1
. In this case, by Property 19 we know that there exists a linear combina-
tion of variables v following a polynomial evolution described by) such
that deg(Q) > 0. As @ eventually diverges, there exists a N such that for
all N > N, [v(AV'X)| > |v(Y)]. This N is the maximum between 0 and
the highest value of x such that Q(z) = v(Y") as, for any higher value of z,
|Q(z)] > |v(Y)|. Also, the set {v.| (e;, ¥o(A)"Ws(v)) | = |Q(N)|} contains all
reachable configurations but does not contain Y, thus (XN, P) is a valid certifi-
cate.

In the general case where A € C, Property 9 guarantees the existence of
generalized eigenvector on W, (A) if A is not diagonalizable (i.e. also admits
generalized eigenvectors)

110
Example. We consider the Orbit problem O(A, X, Y)withA=| 0 1 1
0 01
X =(-2,—-1,1)and Y = (2,6,1)". Aadmits as 1-generalized-left-eigenvectors:
{eo =(0,0,1);e; = (0,1,0);e2 = (1,0,0)}. By the previous property, we know

that es A% = ey + k.e; + X1 o0 thus

2
(A, (wx,yx, 1)) = yx + hax + M54

= 1k? -3k -1
As we can see in Figure 6.1, from k = 3, the value of z is strictly increasing
and after k = 7, the value of z is strictly superior to 2. Thus we have to check
a finite number of iterations before reaching = > 2, which is the certificate set
constraint of the non-reachability of Y. For k € [0, 6], Y is not reached. The
couple (7, {(z,y,1).x > 2}) is thus a certificate of non reachability of Y.

7

6.2.3 Case 4: eigenvalues all have a modulus equal to 1 and
the transformation is diagonalizable

Some transformations do not admit generalized eigenvectors, namely diag-
onalizable transformations. The previous theorem is then irrelevant if for
every eigenvalue)\, || = 1. Such transformations are rotations : they remain
in the same set around the origin. Take as example the transformation A of
Figure 6.2, taken from [Fij+17].

6.2.

Certificate sets of the rational Orbit Problem 105

It defines a counterclockwise rotation around the origin by angle # =arctan(2),

and % is not rational. The reachable set of states from X, i.e. {X, AX, A%X, ...}
is strictly included in its closure, i.e. the set of reachable states and their
neighbourhood. As Y is not on the closure of the set, then we can easily
provide a non-reachability semi-algebraic invariant certificate of Y, that is
the equation of the circle. However, we cannot give such a certificate for Z
though it is not reachable. If it were reachable, there would exist a n such
that A"X = Z, thus A>"X = X. n would also satisfy 6 x n = 0[27], which is
impossible as £ is not rational. More generally, the closure of the reachable

set

of states of diagonalisable transformations with eigenvalues of modulus

1 is a semialgebraic set [Fij+17]. Semialgebraic certificates for such transfor-
mations exist if and only if Y does not belong to this closure [Fij+17].

Theorem 8 For a given instance O(A, X,Y’) such that A is diagonalizable and
all its eigenvalues have a modulus of 1, eigenvectors can be used as semialgebraic
certificates iff Y is not in the closure.

Proof. Let O(A, X,Y) be an instance of the Orbit Problem with A a diag-
onalizable matrix only admitting eigenvalues A such that |\| = 1 Let ¢ an
eigenvector of A, we denote R = {v|3k.A*X = v} the reachable set.

Lemma 9 Let (\;, ¢;) be d couples of eigenvalue / left-eigenvector of a diagonaliz-
able matrix A of size d. Then R = {v|3k,V1 =i > d, (p;,v) = A\F. (¢;, X)}

Proof. Let R’ = {v|3k,V1 > i > d, {p;,v) = A (¢;, X)}. By the definitions
of R and ¢;, the inclusion R C R’ is trivially true. Now take v € R'. As
there exist d different and independent eigenvectors, v is a solution of the
following relation: Jk.®v = (Mzy,..\rz,)!, where @ is an invertible matrix
whose lines are directly defined by eigenvectors. As & is invertible, there
exists only one solution for each k. As v is one of those solutions, then v € R.

By lemma 9, for any i between 1 and d, every element v of R verifies

| {pisv) | = [{pi, X) |, thus R C Ry = {v : [{pi,v)| = | (pi, X) |}. Note that
this inclusion is strict, as X’ = A™'X € R, but X’ ¢ R. If Y does not belong
to R, then (0, R,,) is a non reachability certificate.

N e

U

f(x)
=<

) | |

1,0) oY
7) f |
0)

e R
FIGURE 6.2: Clo-
sure of the reach-

able set of A starting
with X.

106 Chapter 6. How precise can invariants be ?

6.3 General existence of a certificate for the integer
Orbit Problem

The Orbit Problem is originally defined on @, but most programs only work
on integers. Though Z is not a field, it is still possible to define linear transfor-
mations on Z. Basic matrix operations involving divisions (such as inversion)
are forbidden, but the only relevant operation in our case is multiplication
(does there exist a n such that A"X = Y ?) which is consistent for integer
matrices.

When dealing with linear transformations manipulating integers, things
are quite different. Indeed, the following property holds for integer matrices.

Property 20 Let A € M, (Z). If all its eigenvalue X\ have a modulus inferior or
equal to 1, then there exists n > 1 such that \" = \.

Proof. |\ < 1.

If A = 0, then we can conclude right away (0% = 0).

The characteristic polynomial P € Z[X] of A is monic, i.e. its leading co-
efficient is 1. Thus by definition, every eigenvalue is an algebraic integer. We
will use the Kronecker theorem [SZ+65], stating that if a non null algebraic
integer o has all its rational conjugates (i.e. roots of its rational minimal poly-
nomial) admitting a modulus lower or equal to 1, then « is a root of unity.

Each eigenvalue A\ admits a minimal rational polynomial ¢). We can show
that () necessarily divides P by performing an euclidian division : there exist
D,R € Q[X] such that P(X) = Q(X)D(X) + R(X), with the degree of R
strictly inferior to (). We know that P(\) = 0 and Q(\) = 0, thus R()\) = 0.
If R # 0, then R is the minimal polynomial of X as its degree is inferior to
the degree of (), which is absurd by hypothesis. Thus, the set of rational
conjuguates of A are roots of P, by hypothesis of modulus inferior or equal
to 1. By the Kronecker theorem, A is a root of unity, i.e. In > 1.A" = A

0J

This result is fundamental in the proof of the following theorem.

Theorem 9 Any non-reachable instance of the Orbit problem O(A, X,Y’) where
A € M,,(Z) admit a closed semi-algebraic invariant.

Proof. We already treated the case where the matrix has an eigenvalue whose
modulus is different from 1 (Property 18) and the case where the matrix is
not diagonalizable (Property 19). We are left with the hypothesis of the Prop-
erty 20.

Let A be a transformation such that all its eigenvalue are either 0 or roots
of unity. A represents a finite-monoid transformation, i.e. its reachable set of
space is finite. More precisely, there exist N, p such that Vn > N, A"*? = A"
Let P = {AVX, ANTLX | .., ANTP=1 X} If Y is not reachable, then the couple
(P, N) is a non-reachability certificate.

The closure of such a certificate comes from the same eigenvalue argu-
ment. The only case we had a non-closed certificate comes from Property 18

6.4. Perspectives 107

when [A| #0, [\ # 1, [{p, X)| #0and | (p,Y) # 1. Aswe also have [A\| > 1
for integer matrices, the certificate set {v : |(p,v)| > | (¢, X)|} is a valid
closed certificate set.

U

6.4 Perspectives

The generation of certificates is a useful tool for automatic provers that at-
tempts to prove the non reachability of certain invalid states. Still, provers
often try to prove the non reachability of set of states described by one or mul-
tiple predicates instead of the non reachability of specific states. Certificate
sets of transformations of the two first cases treated in Section 6.2 (|\| # 1) are
totally independent of the initial state X, which widens the possible uses of
certificates. It is possible to use the same certificate set for differents values of
X and Y, allowing to treat specific kind of vector sets (coefficients of X and
Y as closed intervals for example, which are encountered more often in pro-
gram verification than precise values). Interesting axis of development are to
find certificates independent of X and Y in the general case and to study in
detail which kind of vector sets can the certificate search be of use.

As this Chapter explores the Orbit Problem for rationals, it is worth not-
ing that certificates may not necessarily be relevant for real-life programs
manipulating floats. For example, the Orbit problem (z +— £, 1,0) has a so-
lution for some floating point implementations due to limited precision. The
question of synthesizing certificates for such problems is also an interesting
challenge.

109

Part 111

Implementation and
experimentations

110

Introduction to Frama-C

So far, we studied methods for helping the challenge of verification as gener-
ating invariants and certificates are possible on the programming model de-
fined in Figure 2.2. This semantic is not expressive enough for real-life needs.
Functions, memory and type system are examples of issues we did not focus
on Chapter 6 as working on exact rationals is simpler than working on floats
for example. Also, synthesizing invariants (Chapter 4 and Chapter 5) is a
mean, not a goal in itself. It must serve the user’s motives for formally ver-
ifying a program, and invariants are generally not sufficient. Usually, they
are provided (either by the user or by a synthesier) so that other tools can
narrow their results.

To this end, the Frama-C framework [Kir+15] provide means to allow
collaboration between differents techniques.

Frama-C Frama-C (FRAmework for Modular Analysis of C programs) is a
collaborative and extensive open-source framework dedicated to the analysis
of C programs. It contains different plug-ins that easies program verification,
such as EVA [BBY17] for abstract interpretation or E-ACSL [SKV17] for dy-
namic analysis. Its kernel and all its plug-ins are developped in OCaml.

Flexible kernel ACSL

FIGURE 6.3: An overview of Frama-C

Its set of plugins share their results through two mechanisms.

¢ A flexible kernel allows any plug-in to communicate through a docu-
mented API. Every plugin results can be reached simultaneously by an
OCaml script for achieving a strong proof obligation that couldn’t be
treated without collaboration.

111

e The ACSL specification language formalizes proof obligations. The
proof of each specification can be performed independently by each
plug-in and saved for later analyses.

The next chapters will introduce two new plus-ins of Frama-C. First,
Chapter 7 the Pilat tool implements the PILA technique described in Chap-
ter 5 with all its extensions. The invariants generated are used by the sec-
ond plug-in, called CaFE (Chapter 8). This plug-in is a model-checker using
abstract interpretation and loop invariants to build an automaton which is
matched to a CaRet [AEM04] specification.

113

Chapter 7

Pilat: A polynomial invariant
synthesizer

Contents
71 Pilattool 113
7.1.1 Architecture overview 113
712 Layers 114
7.2 Experimentations and comparison with existing tools . . . 117

Requirements: PILA method (Chapter 5)

Chapters 4 and 5 introduced two linear invariant synthesis methods. The
algorithm described in Chapter 4 is implemented as a part of the Fluctuat
suite [Goul3]. This chapter will focus on the tool Pilat, a plug-in of the
Frama-C [Kir+15] framework, implementing the eigenvector method of Chap-
ter 5. It will present the architecture of Pilat and how it interacts with other
plug-ins of the framework.

7.1 Pilat tool

7.1.1 Architecture overview

The Pilat initial algorithm described in Chapter 5 is based on three indepen-
dent steps.

e Linearization: Chapter 3 presents a loop semantic transformation that
replaces solvable loops (a sub class of polynomial loops, Definition 12)
by linear loops. Algorithms to test the solvability of a loop and the lin-
earization process are studied in Section 3.3. After this step, the studied
loop is composed of conditions, nested loops and linear assignments.

e Invariant computation: Theorem 4 of Chapter 5 describe sets of linear
loop invariants as the eigenvectors of the dual of the studied transforma-
tion. Inequality invariants can also be deduced from eigenvectors as
described in Section 5.6. When conditions or nested loops occurs, inter-
sections of vectorial spaces are performed.

114 Chapter 7. Pilat: A polynomial invariant synthesizer

Polynomial loop

Layer 3

Y @ Mathematical
libraries
Non Polynom [*€ | Float

solvable = Linearizer |=& library [Zarith
loop - zoth |

A

¥ v —

Invariant < Matrix e
| computation library =€ Lacaml
Non deterministic|
imizati € Sage
optimization
Layer 2
Layer 1 Internal libraries Optimizer

dependency :
Algorithm -

Y Y

Vector / Invariant

FIGURE 7.1: Pilat plug-in architecture

e Non deterministic optimization: The non deterministic optimization
corresponds to the extension described Section 5.7. After generation of
all constraints, a Sage script is called for the resolution of the polyno-
mial constraints.

Remark. Sage [Ste+08] is an open-source mathematical library devel-
oped in Python. It proposes multiple functions for solving the poly-
nomial optimization problem required for the treatment of non deter-
ministic loops. However, it doesn’t propose a function to find directly
a bound of the invariant (called % in Section 5.7), but can only minimize
certain values given polynomial constraints. Therefore, the dichotomy
algorithm of Figure 5.5 is necessary to find bounds.

7.1.2 Layers

Frama-C expresses C programs with an exhaustive AST expressing much
information about types, memory, locations in the source code, etc.. Pilat
is only interested in specific information of this AST, namely assignments,
coefficients and polynomial expressions. It is divided into three layers.

Third layer: mathematical libraries. Pilat relies on multiple mathematical
libraries to express coefficients of the loop. These libraries have the same

7.1. Pilat tool 115

signature', called Ring (cf Appendix A.1) The Pilat tool implements two dif-
ferent Ring modules. When dealing with integer loops, i.e. that do not in-
volve floating point operations nor integer divisions, Pilat will always use
the Zarith library, allowing to represent unbounded size rationals. Other-
wise, when dealing with float loops or non deterministic loops, Pilat will
use the OCaml representation of floats for polynomials with an in-place float
library.

Second layer: internal libraries. Polynomial representation of assignments
and matrix representation of linear transformation are respectively at the
core of the linearization and the invariant generation procedures. Similarly
to the Ring signature, a Matrix and a Polynomial signature are implemented.
Both the Matrix signature (Appendix A.2) and the Polynomial signature (Ap-
pendix A.3) are consistent with the Ring module, in the sense that matrices
as well as polynomials are usable as rings.

In practice, those modules are instantiated as functors®. The functor cre-
ating modules of signature Matrix depends on a module of signature Ring,
which allows creating matrices with polynomial coefficients (as Polynomial
is compatible with the Ring signature). Similarly, the functor creating mod-
ules of signature Polynomial depends on two modules: a Ring module and a
Variable module, containing printing utilities only.

Those functors are used in concert with the libraries of the previous layer
to implement the necessary matrix and polynomial utilities. When dealing
with float loops, Pilat privileges the use of Lacaml, a Matrix module which
is an OCaml binding of the FORTRAN Lapack library.

First layer: Algorithm. Pilat algorithm requires three main components:
a linearizer that transforms a polynomial loop into a linear loop; a invariant
synthesizer; a polynomial optimizer for non deterministic assignments. Loop
bodies are represented by a couple (variable,polynomial) while conditions
are represented as a list of loop bodies.

The linearization algorithms of Figure 3.4 and Figure 3.8 respectively check
the solvability of a polynomial transformation and linearize the loop if and
only if it is solvable. Pilat merges those two algorithms by linearizing the
loop while checking for its solvability. The idea is to attempt to linearize a
transformation, and verify that no monomial ever depend on itself, which
implies by Property 3 that the loop is not solvable.

Algorithms for computing eigenvectors of a matrix abound in the liter-
ature [PC99]. Many different types of matrices possess algorithms to solve
this problem. A generic one is the following: for a loop body f, this step
computes the roots A of the characteristic polynomial P(x) of f (which is de-
fined as the determinant of f — z/d). These roots are exactly the eigenvalues
of f, it is now sufficient to compute the nullspace K = ker(f — A.Id). This

IAn OCaml signature is a contract over a set of function, called module. This contract
must specify the type of elements defined in the implementation of the module that will be
available by other modules.

2In OCaml, functors define modules parametrized by other modules.

116 Chapter 7. Pilat: A polynomial invariant synthesizer

algorithm is used in Pilat when using the Zarith library. As Zarith manip-
ulates only rationals, it only searches for rational roots of P(z), which is a
polynomial with rational coefficients if the matrix has rational coefficients.
The Rational Root Theorem allows catching rational roots easily:

Property 21 Rational roots of P(x) = Z%) a;x" are of the form = with:

e p divides ay;

e ¢ divides a,,.

Proof. Assume there exists a rational root § for P, with p and ¢ coprimes. It
is clear that » »
an(5)" 4 a1 (5) - at = —ag

q q

We multiply everything by ¢™:
anp” + an-1pq + ... + a1pg” T = —aeq"
As p and q are coprimes, then p divides ay. Also, we have
Un1pq + ... + a1pg™ " + apq™ = —a,p”

hence ¢ divides a,,. [J

In other words, it is enough to get all divisors of the extremity of the poly-
nomial and test all possible combinations. Though this test is exponential in
practice, integer loops admit in general a simple characteristic polynomial.
If the characteristic polynomial is too complex, Pilat only checks roots with
small numerators and denominators (bounded by a tool option).
This technique doesn’t work when working on float loops, as they admit real
eigenvalues. In this case, Lacaml has a primitive for generating eigenvalues.
However, experimentations have shown eigenvalues generated this way can
be imprecise when generated by Lacaml, especially when they are not ra-
tional. Generating useful invariants associated to irrational eigenvalues is
quite complex as it implies that the invariant have irrational coefficients as
well. Hence, they have no representation in C. Property 8 gives a partial
answer to this issue, as it allows introducing product of eigenvalues in the
matrix. As the product of every eigenvalue is rational for a rational matrix,
the existence of a rational eigenvalue is guaranteed in the matrix expressing
all monomials of degree n, where n is the size of the matrix. The complexity
of generating these monomials is O(n"), which makes the algorithm unus-
able when n = 4. The search of geometric relations between eigenvalues
(finding rational products of algebraic values) is a possible solution for this
problem. Searching for eigenvalues with Lacaml is only made to check if
an eigenvalue is higher or lower than 1. This check has shown to be valid
on all experimentations presented in Section 7.2, at the end of this Chapter.
Each vector of K) is a A-eigenvector, hence an invariant of f. Computing the
nullspace of a linear transformation is a well known algorithm [Fos86] that

7.2. Experimentations and comparison with existing tools 117

will not be detailed here. When an irrational eigenvalue is used to search for
invariants, Pilat fails to generate a basis for K, because of precision issues.
Hence, it doesn’t generate invariants with irrational, which is exactly what is
expected.

When dealing with non deterministic loops (such as linear filters), a can-
didate invariant is generated and has the form P(X) < k. When dealing with
deterministic loops, such invariants are inductive for all k, but for non deter-
ministic cases, it is only inductive for certain values of k (cf Property 16).
The last component for the treatment of non deterministic loops is a small
script implementing the algorithm of Figure 5.5 to find a value of £ for which
P(X) < kis inductive. In practice, the min implemented in Sage is unsound,
in the sense that & can be underapproximated or overapproximated. This
function takes as argument a starting value for £ and tries to refine it. The
unsoundness is then solved by repeating the process until the difference be-
tween two iterations is small enough to guarantee correctness. This differ-
ence can be set as an option of the tool (to a minimum of 0 which represents
finding the exact value of k).

7.2 Experimentations and comparison with exist-
ing tools

In order to test our method, we implemented an invariant generator as a
plugin of Frama-C [Kir+15], a framework for the verification of C programs
written in OCaml. Tests have been made on a Dell Precision M4800 with
16GB RAM and 8 cores. Time does not include parsing time of the code, but
only the invariant computation from the Frama-C representation of the pro-
gram to the formulas. Two different benchmarks have been used for testing
the method. A first one is specialized with integer programs (available at
[Car08]), while the second manipulates floating point transformation (more
details on Appendix B). Results are respectively in Table 7.1 and Table 7.2.

All the tested functions are examples for which the presence of a polyno-
mial invariant is compulsory for their verification. The choice of high degree
for some functions is motivated by our will to show the efficiency of our
tool to find high degree invariants as choosing a higher degree induces com-
puting a bigger set of relations. In the other cases, degree is choosen for its
usefulness.

For example in figure 7.2 we were interested in finding the invariant z +
qy = k for eucli_div. That’s why we set the degree to 2. Let X be the vector of
variables (z,vy, ¢, zq, vy, qy, y2, T2, ¢2, 1). The matrix A representing the loop
in figure 7.2 has only one eigenvalue : 1. There exist 4 eigenvectors {¢; }ic[1,4

4
associated to 1 in A, so <Z kie;, X > = 0 is a semi-invariant. One of these
=1
eigenvectors, let’s say e;, correspond to the constant variable, i.e. ;. X =1 =
4
1, thus we have (> k;e;, X) = —k; as invariant. In our case, (es, X) = y,
=2

{e3, X) = o + yq a;d (€4, X) = yo. We can remove (y = k) and (y, = k)

118 Chapter 7. Pilat: A polynomial invariant synthesizer
Program H Time (in ms)
Name Var Degree || Aligator Fastind Pilat
[KovO08] [Cac+14]
divbin 5 2 80 6 2.5
hard 6 2 89 13 2
mannadiv 5 2 27 6 2
sqrt 4 2 33 5 1.5
djikstra 5 2 279 31 4
euclidex2 8 2 1759 10 6
lem?2 6 2 175 6 3
prodbin 5 2 100 6 2.5
prod4 6 2 13900 - 8
fermat2 5 2 30 9 2
knuth 9 3 O.0.T. 347 192
eucli_div 3 2 13 6 2
cohencu 5 2 90 5 2
read_writ 6 2 82 - 12
illinois 4 2 O.0.T. - 8
mesi 4 2 620 — 4
moesi 5 2 0O.0.T. - 8
petter_4 2 10 19000 37 3
petter_5 2 10 O.0.T. 37 2
petter_6 2 10 O.0.T. 37 2

TABLE 7.1: Performance results with our implementation Pilat
for deterministic integer loops. The second column of the table
represents the number of variables used in the program. The
third column represents the invariant degree used for Pilat and
Fastind . The last three columns are the computation time of the
tools in ms. O.O.T. represents an aborted ten minutes computa-

tion and — indicates that no invariant is found.

7.2. Experimentations and comparison with existing tools 119

PILAT Input Results Abs. Int.
Program Var Degree #invariants | Generation | Optimization Proof
(in's) (in's) (in's)
Deterministic
Example 1 2 2 1 0.003 - 1.6
Dampened oscillator 2 2 1 0.007 - 0.036
Harmonic oscillator 2 2 1 0.004 - 0.035
Sympletic oscillator 2 2 1 0.002 - 0.008
[AGG12] filter 2 1 1 0.0035 - 0.0017
Non deterministic
Simple linear filter 2 2 1 0.0015 13 6.5
Example 3 2 2 1 0.003 1.7 43
Linear filter 2 2 1 0.0019 1 1
Lead-lag controller 2 1 2 0.002 25 6
Gaussian regulator 3 2 1 0.007 25 -
Controller 4 2 5 0.066 14 -
Low-pass filter 5 2 2 0.06 7 -

TABLE 7.2: Performance results with our implementation Pi-
lat for deterministic and non deterministic linear filters. The
tirst part represents deterministic loops (thus, no optimization
is necessary). The second part of the benchmark are non de-
terministic loops. Tests with abstract interpretation have been
performed with the fixpoint solver described in [MBR16] by at-
tempting to prove goals implied by the invariants our tool syn-
thesizes when they were compatible.

that are evident because y does not change inside the loop. The remaining
invariant is x 4+ yq = k.

120 Chapter 7. Pilat: A polynomial invariant synthesizer

Input : degree =2 Frama-C output :
int eucli_div(int x, int y){ int eucli_div(int x, int y){
int g = 0; int g = 0;
while (x > y) | int k = x + yxq;
X = X-y; // invariant x + y*q = k;
g t++; while (x > y) {
} X = X-Y;
return g; q ++;
} }
return g;
}

FIGURE 7.2: Euclidean division C loop and generation of its
associated invariants.

121

Chapter 8

CaFE: model checking

Contents
81 Motivation 121
8.2 CaFE:amodel checker of CaRet formulas 122
83 OverviewofCaFE 124
8.4 Applicationtoconcurrency 126

8.1 Motivation
Requirements: Model-checking (Section 2.3)

The right sequencing of events along time is a widely studied topic of
program analysis, for example when studying distributed systems or infor-
mation exchange protocols. In particular, temporal logics [Pnu77] allows de-
scribing formally the expected behavior of a system as a succession of distinct
actions. In Frama-C, the specification language ACSL is used by many plug-
ins as a proof-sharing system. In general, LTL properties are difficult to ex-
press using only ACSL, particularily when studying multiple function calls.
On the other hand, temporal logics [Pri57] are apropriate tools for such prop-
erties. Besides, they allow the study of infinite execution paths that ACSL is
not designed to specify. The Linear Temporal Logic [Pnu77], or LTL, inter-
prets time as a linear sequence of actions and modelizes properties for such
a sequence. Those properties are translated into automatons that are matched
against the program behavior.

Aorai [SP11] is a Frama-C plug-in allowing the verification of LTL for-
mulas over a finite C program. The tool generates ACSL predicates at every
call and return site of each function such that the verification of such predicates
is equivalent to the verification of the initial LTL formula [Gio+08]. These ACSL
specifications are independent of the initial program as they involve newly
created variables stating the position on the automaton. In order to solve
them, other tools must infer the relations between the program variables and
the new variables, which may not be solved easily.

Also, let us recall the three temporal properties of interest introduced in
Section 2.3.1:

122 Chapter 8. CaFE: model checking

e during a given event, the lock must not be taken (safety requirement);

e if an event occurs in the function f, then when f has been called, the
lock was not taken (contextual requirement);

e every function must free the lock before it returns (liveness require-
ment).

While Aorai/LTL is unable to catch such properties, the tool CaFE has been
developped. CaFE (for CaRet Frama-c’s extension) is a model-checker based
on the CaRet temporal logic [AEM04]. The CaRet temporal logic has tuned
operators allowing to express properties on specific program points and on
the call stack. The original algorithm of [AEM04] can decide in finite time
(complexity 2-EXP) the validity of a CaRet formula over a Recursive State
Machine (or RSM). This is not the case for programs, as the CaRet language
can express the halting problem which is known to be undecidable. The idea
of CaFE is to generate informations on the program for guiding the analysis
and apply generalized model-checking [BGOO]. Generalized model-checking is a
method to adapt model-checking algorithms to work on partial information
models. This chapter will introduce the Abstract Recursive State Automata, or
ARSM, and the CaRet temporal logic for partial information models in Sec-
tion 2.3.5. Then, Section 8.2 adresses the problem of adapting the original
algorithm to work on ARSM and remain correct, in the sense that a posi-
tive answer of an algorithm can be trusted (but not a negative answer). At
last, the architecture of CaFE working with different plug-ins of Frama-C is
presented in Section 8.3.

A full description of this work can be found in [OPB].

8.2 CaFE : a model checker of CaRet formulas

Soundness.

The model-checking algorithm of CaRet properties over RSM is already well
known [AEMO04]. For a RSM R on a proposition set AP and a formula ¢,
it is possible to compute the product automaton S_, = R x —¢ that accept
every word that correspond to an execution of R and that verifies . Each
node of this automaton holds the set of properties that must be required at a
given program point. Any accepting path of this new automaton is a counter
example of the checked property. If £(S-,) is empty, then every execution
of R verifies ¢ (or R F ¢). The general idea is to execute both automatons
at the same time, create a new state including the location on the RSM and
which properties are verified, and check whether the state is consistent or
not with respect to 7. If it is, the state is preserved, otherwise it is deleted.
Being able to decide at any node n € N of R which property is consistent and
which is not is crucial to this construction. For a RSM R, a state of R x -
representing the node n € N is valid when all the properties p € AP it holds
verify n(n,p) = T [AEMO04].

8.2. CaFE : a model checker of CaRet formulas 123

Abstract recursive state machine. It is not possible to exactly represent a
program by a RSM, mostly because it is not possible, for a given proposition
set AP, to have a complete function 7.

Definition 28 An abstract recursive state machine (or ARSM) is exactly a RSM,
except its labeling function n is allowed to return x when the validity of a property
is unknown.

In the case of an ARSM A, the incompleteness of the labeling function
forbids to have a straight forward interpretation of consistency. The general
idea of generalized model checking [BGO0] is to give an interpretation of the
unknown answer *.

e Considering % as incoherent is similar to not taking any risk. As soon
as the labelling function cannot decide, the state is invalid and hence,
not added to the product automaton. We are left only with states that
are decided.

e Considering * as possible allows preserving states of the product au-
tomaton that contradicts themselves by stating that, on a givenn € N
of A, both p and —p are possible.

S = A X © A x -

No-risk no unsatisfying exe- | no satisfying execu-
cutions of A tions of A

Sound at least all satisfying | at least all unsatisfy-
executions of A ing executions of A

TABLE 8.1: Interpretation of the product automaton paths in
the no-risk and the sound strategies.

One important guarantee to provide in model-checking is soundness, or
in other words the guarantee of the validity of positive results. Table 8.1 in-
terprets the set of paths of the product automatons A x ¢ and A x =¢. Choos-
ing an automaton that contains all satisfying executions or no unsatisfying
execution is irrelevant for soundness. An automaton S with no satisfying
execution doesn’t bond an effective unsatisfying execution to belong to S.
That is why the choice of A x —~¢ with the sound strategy is the more efficient
choice in this case.

Property 22 Let A an ARSM and ¢ a CaRet formula. If L(R x —p) = () with the
sound strategy, then A F ¢

Proof. If A ¥ ¢, there exist a path 7 satisfying ~¢. As S, = A X - repre-
sents at least all the unsatisfying executions of A, £(5-,) will at least admit
. U

124 Chapter 8. CaFE: model checking

Comparison of similar automatons

Definition 29 Let A = (M, { R }menr, 0, init)and A" = (M’ { R}, } e, ', init')
two ARSM. A and A’ are equivalent if M = M', Vm € M,R,, = R, and

init = init’.

Definition 30 Let A; and Ry two ARSM. Let Fib,(A) = {(s,p)|n(s,p) = a} the
fiber of a by n. A, approximates Ay, or Ay > A, if and only if:

o Ay and A, are equivalent

° F’LbT(Al) Q FZbT(AQ) and FZbL(Al) Q FZbL(AQ)

Remark. If A; > Ay, then Fib,(As) C Fib,(A;). If Ay is a classic RSM, then
Fib,(As) = 0 by definition. Every approximation of A is an ARSM whose
decided properties have the same truth value than A, according to 7.

Property 23 Let Ay, Ay two ARSM such that Ay > A, and ¢ CaRet formula. Let
S1 = A1 x npand Sy = Ay x —p. Then L(S2) C L(Sh).

If Ay > Ay, then Fib, (A1) C Fib,(As) for a € {T,L}. Letm® € L(5,).
7 can be seen as a sequence of nodes of S, that have been accepted during
the product of A; and —¢. This means that the properties that each node
holds have been either validated by 7 (T) or that it can’t conclude (x) as the
sound strategy considers coherent what is unknown. As A; > A,, then let n
an element of 7. 7 cannot refute n to belong to S; as Fib, (R;) C Fib, (As).
Therefore, every node of m belong to S;. [

8.3 Overview of CaFE

CaFE (CaRet Frama-C’s extension) is a model-checker based on the previ-
ous properties. interactions with different plug-ins of the framework and an
external prover, Z3.

CaFE. The transformation of a C' program to a RSM is made in-place by
Frama-C, that parses the source code to a CFG described in C Intermediate
Language [Nec+02] (or CIL). A CIL control flow graph is structurally more
expressive than a A RSM. Predecessors, successors, functions entry and exit
points are expressed in CIL, which is enough to represent the main frame of
an A RSM. There only misses the labelling function 7. So as to solve this issue
and the characteristic combinatory explosion of model checking, CaFE work
along with some other plug-ins of Frama-C.

e EVA [BBY17]: an abstract interpreter able to combine multiple numeri-
cal domains. Its results are saved as numerical invariants for each pro-
gram points. It is possible to check the possible abstract value of an
expression on any program point. This is the main source of informa-
tion for the 7 function.

8.3. Overview of CaFE 125

State
reduction

Z3

7 ~
e T N\
CaRet Abstract recursive > Incorrect final —3» +
Specification automaton states Counter-
A A e example

N

Reachability

OK

cp Annoted program (Weakest
rogram Numerical invariants precondition
calculus)

Pilat

+ EVA Dataflow + Z3
Frama-C

FIGURE 8.1: Functionning of CaFE

e Pilat: the invariant synthesizer described in Chapter 7. It adds ACSL
annotations to linear loops that can be used to refine the 7 function for
loops that EVA often overapproximate too widely.

e The Dataflow module: a generic tool for iterating over a CIL control
flow graph (forwards and backwards)

The product of the program seen as a RSM and the negation of the CaRet
specification uses the results of the two first tools to delete states that are
inconsistent with respect to an effective execution of the program. When both
EVA and Pilat cannot conclude on the consistency of a state, the SMT solver
Z3 [MB08] is used in addition. The case where Z3 also cannot conclude is
the case where 7 responds .

The new automaton S is then simplified by deleting non-accepting paths
and unreachable nodes. If there is still accepting states, a weakest precon-
dition calculusis launched by the Dataflow module from the accepting final
states that reuses the results of EVA and Pilat. The validity of each path is
tested by Z3. Inconsistent paths with respect to this calculus are removed,
while others are output as counter-examples.

Limitations. The tool CaFFE still presents some limitations. First, non solv-
able loops are not treated by Pilat, therefore they are not given additional
loop invariants. Even if EVA overapproximates the loop state, this state is
often imprecise. When such situation occurs, CaFE returns many false posi-
tives. The user may solve this issue by changing EVA options to get a satis-
fying level of precision.

Also, the complexity of model-checking limits the size of case studies. In
general, the problem is linked to the size of the CaRet property to verify. It
is necessary to manually divide the formula into multiple smaller formulas.

126 Chapter 8. CaFE: model checking

For example, it is in general more efficient to prove a and b separately than
verifying a A b.

8.4 Application to concurrency

With the current arrival of multi core processors, the shared memory princi-
ple raised many issues, especially the access by a core of a data in the cache
that is being processed by another core. The MOESI is a cache coherence pro-
cotol solving this issue. Each line of the cache is attributed a state: modified,
owned, exclusive, shared or invalid. When a core needs to access a cache line, it
performs a request to ensure the exclusivity of the line. If the status of each
line can be modified, the protocol must ensure there are always the same
total number of lines.

For this experimentation, a sequential representation of the protocol in
Figure 8.2 inspired from [Car(08] has been used. This is simply an infinite
loop simulating after every step the call to a function manipulating the con-
tent of a cached data. The goal of this experimentation is to compare two
different specifications testing if the initial ressources are conserved during
the program execution under two hypotheses:

e each instruction is observed sequentially: GY(m +o+e+s+i=c);

e function calls are considered atomic: G*(m +o0+e+s+1i = c).

In ACSL, those specifications can be represented by a set of assertions over
the main function, where each assertion must be proven separately. This pro-
cess is inefficient for the automatic treatment of large programs. In CaFE,
the program is directly assimiled to a RSM as represented in Figure 8.2. The
use of the full Frama-C framework is vital for the treatment of the temporal
specifications.

1. Pilat starts by generating the unique linear inductive invariant of the
loop: m 4+ 0+ e+ s + i = k, where k is a unknown constant.

2. EVA analyses the full program, proving in particular that the main does
not ends (the exit of main is unreachable) and adds to each instruction
a numerical invariant in a choosen domain (here, only the interval do-
main is used).

3. Thanks to this data, CaFE applies the model-checking technique de-
scribed in Section 8.2. Unreachable and inconsistent states are deleted
from the generated product automaton with respect to the results of
Pilat and EVA It also uses Z3 in order to refine the simplification.

4. There still exist accepting final states. A backward analysis of the pro-
gram by the Dataflow module with the use of Z3 quickly proves those
states cannot be reached. The corresponding states are deleted as well
as the possible paths leading to them.

8.4. Application to concurrency

127

f2()

i=m+o+e+s+i-1

VAVAV/

o
Il
o

C

assume
i1= 0/ assume

e!l=0

main()
assume
m!=0
[[o!=0

v,

FIGURE 8.2: Recursive state machine representing the MOESI

protocol.

Chapter 8. CaFE: model checking

128

Initial state :
= [0,15], 0 =[0,15],e = [0,15], s = [0,15],i = [0,15],c=m+o+ e+ s+ i;

FIGURE 8.3: CaFE result: the set of program executions not satisfying the formula G9(m + o + e + s + i = ¢). It contains
multiple accepting states, therefore the formula is considered false by CaFE. In the case of G*(m + o0+ e + s + i = ¢), there
exist no counterexample left, so the formula is indeed true. donc vérifiée.

8.4. Application to concurrency 129

Observations. The result of the proof of the two specifications is available
on Figure 8.3. The specification GY(m + 0 + e + s + i = c) is clearly incorrect
as the function, not being considered atomic, modify sequentially the state
of the cache during an update. CaFE is able to generale real (but unproven)
counterexamples to this specification under the form of a RSM containing
multiple accepting states. As each of those states corresponds to an instruc-
tion, it is possible to extract a set of possible executions leading to a final state
where the property have been violated. Conversely, the invariant generated
by Pilat proves the set of ressources is preserved between two loop steps. The
formula G*(m + 0+ e+ s + i = c) specifying the invariance of the quantity of
ressources between the beginning and the end of each step of the protocol is
then verified.

131

Part IV

Perspectives

133

Chapter 9

Conclusion

This thesis developped new insights on linear invariants by investigating
three problematics.

9.1 Solvability

The first contribution of this thesis is the explicitation of the solvable polyno-
mial class as the only polynomials that are expressible by finite linear trans-
formations. Linear arithmetic in the integers is known to be a decidable the-
ory in SMT solving, while polynomial arithmetic is not. As there exists a
technique generating all invariants of solvable loops [RKO07], it was difficult
to tell which problem is decidable and which is not. This new result brings
more insights on the class of solvable transformations and it is a nice step in
the classification of decidable problems for loops.

9.1.1 Polynomial similarity

The elevation principle is a very simple concept. So simple that it feels strange
that it has never been formalized before. Similarity is a key concept in lin-
ear algebra, that allows to associate different linear transformations that per-
form the same operation, but on different bases. Linear algebra restricts itself
(rightfully) to linear transformation, hence changing the base is also a linear
transformation. In this thesis, similarity has been generalized to polynomial
base changing applications in the context of linear invariant generation. Fun-
damental properties of these transformations has also been investigated, but
some questions remain unanswered:

e what is the nature of the operator ¥, ?

e equivalence' generalizes similarity in linear algebra, is there an equiv-
alent relation for polynomial similarity ?

e what are the properties of V,(A) that are deducible from A ?

This last question has been partly solved by the study of properties of the
eigenvalues of U,(A), but there is few information on its rank, its character-
istic polynomial or its determinant for example.

1A and B are equivalent if there exist P and Q invertible such that A = QBP~!

134 Chapter 9. Conclusion

9.1.2 Infinite systems

The Carleman linearization procedure [KS91] inspiring this work is initially
developped for linearizing any finite system of polynomial differential equa-
tion to an infinite system of linear differential equations by the exact same
procedure. Each monomial of variable is seen as an independent function as-
sociated to a new linear differential equation, just as we associated to mono-
mials new variables evolving linearly. In the non-solvable case, the proce-
dure doesn’t end as we restricted our study to finite linear transformations.
The relevance of linearizing non-solvable transformations to infinite linear
transformations is still open, and it has been shown to be unsound in the
case of Carleman [Ste89] (there exists solutions of the infinite linear system
that are not solutions of the finite polynomial system).

9.2 Invariant generation

The second contribution of this thesis are the new invariant synthesis meth-
ods. Two very different approaches have been studied in this thesis. The
tirst approach is based on abstract intepretation and constraint solving. It has
shown to be precise and adapted to the analysis of linear filters by generating
approximations of ellipsoids, which are in general good invariants for such
programs. The second approach was based on the eigenvector decomposi-
tion of linear loops. This technique is more generic, as all linear loops can be
studied, including loops with contitions, nested loops and non deterministic
assignments.

9.2.1 Generalization of the parametrized widening operator

Abstract interpretation generally lacks precision when it comes to handling
loops, while acceleration lacks genericity. The parametrized widening oper-
ator described in Chapter 4 is a good trade off between the two techniques
and gives good results in term of precision. In general, techniques based on
parametrization rely on SMT solvers to be fully functional (in our case, to
find a valuation of the parameters). We developped this technique under the
scope of the zonotope abstract domain, but it is not clear whether this is the
only abstract domain in which this technique could be applied. We can imag-
ine generalizing this technique to more classical domains. The challenge is
not really to be able to apply this technique to other domains, but to apply
it to different kind of loops. In the case of linear filters and zonotopes, we
assumed the nice property of slowly converging toward an invariant, which
may not be the case for other loops. Determining what conditions are nec-
essary for this kind of approach to succeed in synthesizing an invariant is a
possible axis of development for widening operators.

9.3. Usefulness of eigenvectors 135

9.2.2 Spectral theory

The eigenvector characterization of linear invariants of Chapter 5 in based
on vector space with finite dimenson. It has the advantage to provide a sim-
ple way to generate and prove linear loop invariants. As we said above,
linearization could be generalized to handle any kind of polynomial loops
by using an infinite number of variables. Spectral theory [EES7] generalizes
the eigenvalue/eigenvector decomposition problem to vector spaces of in-
finite dimension. Invariant properties of eigenvectors are suspected to be
preserved on any vector space.

9.3 Usefulness of eigenvectors

The last contribution of this thesis relies on the practical use of invariants.
Along with the generation of certificates, invariants are necessary in program
proofs. In the context of C programs, the tool Pilat generates them as ACSL
loop invariants that can be used by the different plug-ins of Frama-C.

9.3.1 Complete characterization of certificates

Eigenvectors have not only shown to be invariants easy to generate, but also
expressive enough to solve the Kannan-Lipton Orbit problem. The study of
the eigenvalues role in the generation and the degree of those certificates is a
key in understanding their shape. The generation of linear certificates with
algebraic coefficients is still an open problem. The complete characterization
of invariants coupled with this certificate study gives us necessary clues in
solving it.

9.3.2 Pilat extensions

Some extensions of the method have not been implemented, such as the gen-
eration of inequality invariants when the linear transformation admits gen-
eralized eigenvectors of order at least 2. When their associated eigenvalue
is 1, then we saw that it is possible to generate invariants in Chapter 6 by
considering their polynomial behavior. The question of how to generate in-
variants from generalized eigenvector associated to different eigenvalues has
not been raised neither.

9.3.3 Temporal logic

The usefulness of these invariants have been proven by the generation of cer-
tificates and by the model-checker CaFE. This model-checker, based on the
abstract interpreter EVA, uses the results of Pilat to precise its results. How-
ever, it is not efficient as the model-checking algorithm is 2-EXP in the size of
the CaRet specification. CaRet is a powerful language that allows to express
a large number of behavor. A lot of them are nonetheless practically never
used, hence the question of the relevancy of the choice of CaRet remains.

136 Chapter 9. Conclusion

The model-checking algorithm is basically the same for every tool (based on
the automaton product). An interesting axis of developmenty of CaFE is its
potential ability to handle different temporal logics with different operators.
For example, as Pilat uses different libraries of temporal logic, CaFE could
use different instanciations of temporal logics or automatons to perform a
model-checking procedure. It could also be enhanced by counter-example
verification, which is not the case in the current implementation.

137

Bibliography

[AEMO04] Rajeev Alur, Kousha Etessami, and P. Madhusudan. “A Tempo-
ral Logic of Nested Calls and Returns”. In: Tools and Algorithms
for the Construction and Analysis of Systems, 10th International Con-
ference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings. 2004, pp. 467-481. DOI: 10 .
1007/978-3-540-24730—-2_35. URL: https://doi.org/
10.1007/978-3-540-24730-2_35.

[AGG12] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. “Coupling
policy iteration with semi-definite relaxation to compute accu-
rate numerical invariants in static analysis”. In: Logical Methods in
Computer Science 8.1 (2012). DOI: 10.2168/LMCS-8(1:1)2012.
URL: https://doi.org/10.2168/LMCS-8(1:1)2012.

[AM09] Rajeev Alur and Parthasarathy Madhusudan. “Adding nesting
structure to words”. In: Journal of the ACM (JACM) 56.3 (2009),
p. 16.

[Bar+05] Sébastien Bardin et al. “Flat Acceleration in Symbolic Model Check-
ing”. In: Automated Technology for Verification and Analysis, Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7,
2005, Proceedings. 2005, pp. 474-488. DOI: 10.1007/11562948_
35. URL: https://doi.org/10.1007/11562948_35.

[Bar+11] Clark Barrett et al. “CVC4”. In: Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings. 2011, pp. 171-177. DOI: 10 . 1007 /978 - 3 -
642-22110-1_14. URL: https://doi.org/10.1007/978-
3-642-22110-1_14.

[Bau+16] Patrick Baudin et al. ACSL: ANSI C Specification Language, version
1.12. 2016.

[BBY17] Sandrine Blazy, David Biihler, and Boris Yakobowski. “Structur-
ing Abstract Interpreters Through State and Value Abstractions”.
In: Verification, Model Checking, and Abstract Interpretation - 18th
International Conference, VMCAI 2017, Paris, France, January 15-17,
2017, Proceedings. 2017, pp. 112-130. DOI: 10 . 1007 / 978 - 3 -
319-52234-0_7.URL: https://doi.org/10.1007/978-
3-319-52234-0_7.

[Ber14] Dimitri P Bertsekas. Constrained optimization and Lagrange multi-
plier methods. Academic press, 2014.

http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.2168/LMCS-8(1:1)2012
https://doi.org/10.2168/LMCS-8(1:1)2012
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/11562948_35
https://doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-52234-0_7
http://dx.doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7

138 BIBLIOGRAPHY

[BGOO] Glenn Bruns and Patrice Godefroid. “Generalized Model Check-
ing: Reasoning about Partial State Spaces”. In: CONCUR 2000 -
Concurrency Theory, 11th International Conference, University Park,
PA, USA, August 22-25, 2000, Proceedings. 2000, pp. 168-182. DOTI:
10.1007/3-540-44618-4_14. URL: https://doi.org/
10.1007/3-540-44618-4_14.

[Cac+14] David Cachera et al. “Inference of polynomial invariants for im-
perative programs: A farewell to Grobner bases”. In: Sci. Comput.
Program. 93 (2014), pp. 89-109. DOI: 10.1016/73.scico.2014.
02 .028. URL: https://doi.org/10.1016/3j.scico.
2014.02.028.

[Car08] E.R. Carbonell. “Polynomial invariant generation”. http : / /
WWW.Ccs.upc.edu/~erodri/webpage/polynomial_invariants/
list.html. 2008.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints”. In: Conference Record
of the Fourth ACM Symposium on Principles of Programming Lan-
guages, Los Angeles, California, USA, January 1977. 1977, pp. 238-
252.DO1: 10.1145/512950.512973. URL: http://doi.acm.
org/10.1145/512950.512973.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of
linear restraints among variables of a program”. In: Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. ACM. 1978, pp. 84-96.

[Cla+00] Edmund M. Clarke et al. “Counterexample-Guided Abstraction
Refinement”. In: Computer Aided Verification, 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings.
2000, pp. 154-169. DOT: 10.1007/10722167_15. URL: https:
//doi.org/10.1007/10722167_15.

[Conl13] John H Conway. “On unsettleable arithmetical problems”. In: The
American Mathematical Monthly 120.3 (2013), pp. 192-198.

[Del+09] David Delmas et al. “Towards an Industrial Use of FLUCTUAT
on Safety-Critical Avionics Software”. In: Formal Methods for In-
dustrial Critical Systems, 14th International Workshop, FMICS 2009,
Eindhoven, The Netherlands, November 2-3, 2009. Proceedings. 2009,
pp.5}69.DOL 10.1007/978-3-642-04570—-"7_6. URL:
https://doi.org/10.1007/978-3-642-04570-7_6.

[Deu03] Alain Deutsch. “Static verification of dynamic properties”. In:
Polyspace white paper (2003), p. 45.

[EE87] David Eric Edmunds and W Desmond Evans. Spectral theory and
differential operators. Vol. 15. Clarendon Press Oxford, 1987.

http://dx.doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44618-4_14
http://dx.doi.org/10.1016/j.scico.2014.02.028
http://dx.doi.org/10.1016/j.scico.2014.02.028
https://doi.org/10.1016/j.scico.2014.02.028
https://doi.org/10.1016/j.scico.2014.02.028
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-642-04570-7_6
https://doi.org/10.1007/978-3-642-04570-7_6

BIBLIOGRAPHY 139

[Ern+01]

[Fij+17]

[Flo67]

[Fos86]

[GGP09]

[Gio+08]

[GKC13]

[Goul3]

[GP15]

Michael D. Ernst et al. “Dynamically Discovering Likely Program
Invariants to Support Program Evolution”. In: IEEE Trans. Soft-
ware Eng. 27.2 (2001), pp. 99-123. DOI: 10.1109/32.908957.
URL: https://doi.org/10.1109/32.908957.

Nathanaél Fijalkow et al. “Semialgebraic Invariant Synthesis for
the Kannan-Lipton Orbit Problem”. In: 34th Symposium on Theo-
retical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany. 2017, 29:1-29:13. DOI: 10 . 4230 /LIPIcs .
STACS . 2017 . 29. URL: https : //doi .org/ 10 . 4230/
LIPIcs.STACS.2017.209.

Robert W Floyd. “Assigning meanings to programs”. In: Mathe-
matical aspects of computer science 19.19-32 (1967), p. 1.

Leslie V Foster. “Rank and null space calculations using matrix
decomposition without column interchanges”. In: Linear Algebra
and its Applications 74 (1986), pp. 47-71.

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope
Abstract Domain Taylorl+”. In: Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July
2, 2009. Proceedings. 2009, pp. 627-633. DOI: 10.1007 /978~ 3~
642-02658-4_47.URL: https://doi.org/10.1007/978-
3-642-02658-4_47.

Alain Giorgetti et al. “Verification of class liveness properties with
Java modeling language”. In: IET Software 2.6 (Dec. 2008), pp. 500
514. DOI: 10.1049/iet-sen:20080008. URL: http://dx.
doi.org/10.1049/iet-sen:20080008.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal: An
SMT Solver for Nonlinear Theories over the Reals”. In: Automated
Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. 2013,
Pp- 208-214. DOI: 10.1007/978-3-642-38574-2_14. URL:
https://doi.org/10.1007/978-3-642-38574-2_14.

Eric Goubault. “Static Analysis by Abstract Interpretation of Nu-
merical Programs and Systems, and FLUCTUAT”. In: Static Anal-
ysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings. 2013, pp. 1-3. DOI1: 10.1007/978~
3-642-38856-9_1. URL: https://doi.org/10.1007/
978-3-642-38856—-9_1.

Eric Goubault and Sylvie Putot. “A zonotopic framework for func-
tional abstractions”. In: Formal Methods in System Design 47.3 (2015),
pp-302-360.DO1: 10.1007/s10703-015-0238-z. URL: https:
//doi.org/10.1007/s10703-015-0238~z.

http://dx.doi.org/10.1109/32.908957
https://doi.org/10.1109/32.908957
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.29
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.29
https://doi.org/10.4230/LIPIcs.STACS.2017.29
https://doi.org/10.4230/LIPIcs.STACS.2017.29
http://dx.doi.org/10.1007/978-3-642-02658-4_47
http://dx.doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/s10703-015-0238-z

140 BIBLIOGRAPHY

[GPV12] Eric Goubault, Sylvie Putot, and Franck Védrine. “Modular Static
Analysis with Zonotopes”. In: Static Analysis - 19th International
Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Pro-
ceedings. 2012, pp. 24—40. DOI: 10.1007/978-3-642-33125~
1_5. URL: https://doi.org/10.1007/978-3-642-
33125-1_5.

[GS14] Laure Gonnord and Peter Schrammel. “Abstract acceleration in
linear relation analysis”. In: Sci. Comput. Program. 93 (2014), pp. 125-
153. DOI: 10.1016/j.scico.2013.09.016. URL: https:
//doi.org/10.1016/3j.scico.2013.09.016.

[Hoat9] C. A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming”. In: Commun. ACM 12.10 (1969), pp. 576-580. DOI: 10 .
1145/363235.363259. URL: http://doi.acm.org/10.
1145/363235.3632509.

[ILR17] Hugo Illous, Matthieu Lemerre, and Xavier Rival. “A Relational
Shape Abstract Domain”. In: NASA Formal Methods - 9th Interna-
tional Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18,
2017, Proceedings. 2017, pp. 212-229. DOI: 10 . 1007 / 978 - 3 -
319-57288-8_15. URL: https://doi.org/10.1007/978-
3-319-57288-8_15.

[JMO09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Nu-
merical Abstract Domains for Static Analysis”. In: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. 2009, pp. 661-667. DOI: 10 .
1007/978-3-642-02658-4_52. URL: https://doi.org/
10.1007/978-3-642-02658-4_52.

[JSS14] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan.
“Abstract acceleration of general linear loops”. In: The 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 14, San Diego, CA, USA, January 20-21,
2014. 2014, pp. 529-540. DOI: 10 . 1145 /2535838 . 2535843.
URL: http://doi.acm.org/10.1145/2535838.2535843.

[Kar76] Michael Karr. “Affine Relationships Among Variables of a Pro-
gram”. In: Acta Inf. 6 (1976), pp. 133-151.DO1: 10.1007/BF00268497.
URL: https://doi.org/10.1007/BF00268497.

[Kir+15] Florent Kirchner et al. “Frama-C: A software analysis perspec-
tive”. In: Formal Asp. Comput. 27.3 (2015), pp. 573-609. DOI: 10 .
1007/s00165-014-0326—-7. URL: https://doi.org/10.
1007/s00165-014-0326-7.

[KL80] Ravindran Kannan and Richard J. Lipton. “The Orbit Problem
is Decidable”. In: Proceedings of the 12th Annual ACM Symposium
on Theory of Computing, April 28-30, 1980, Los Angeles, California,
USA. 1980, pp. 252-261. DOI: 10.1145/800141.804673. URL:
http://doi.acm.org/10.1145/800141.804673.

http://dx.doi.org/10.1007/978-3-642-33125-1_5
http://dx.doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
http://dx.doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1016/j.scico.2013.09.016
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-319-57288-8_15
http://dx.doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1145/2535838.2535843
http://doi.acm.org/10.1145/2535838.2535843
http://dx.doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1145/800141.804673
http://doi.acm.org/10.1145/800141.804673

BIBLIOGRAPHY 141

[KL86]

[Koc+18]

[Kov08]

[KS91]

[LAO4]

[Lan97]

[Mau04]

[MBO08]

[MBR16]

Ravindran Kannan and Richard J. Lipton. “Polynomial-time al-
gorithm for the orbit problem”. In: J. ACM 33.4 (1986), pp. 808-
821.DOI1: 10.1145/6490.6496. URL: http://doi.acm.org/
10.1145/6490.6496.

Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution”. In: arXiv preprint arXiv:1801.01203 (2018).

Laura Kovécs. “Aligator: A Mathematica Package for Invariant
Generation (System Description)”. In: Automated Reasoning, 4th
International Joint Conference, IJ[CAR 2008, Sydney, Australia, Au-
gust 12-15, 2008, Proceedings. 2008, pp. 275-282. DOI: 10.1007/
978-3-540-71070-7_22. URL: https://doi.org/10.
1007/978-3-540-71070-7_22.

Krzysztof Kowalski and W-H Steeb. Nonlinear dynamical systems
and Carleman linearization. World Scientific, 1991.

Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: 2nd
IEEE / ACM International Symposium on Code Generation and Opti-
mization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. 2004,
pp- 75-88. DOI: 10.1109/CG0.2004.1281665. URL: https:
//doi.org/10.1109/CG0.2004.1281665.

Gérard Le Lann. “An analysis of the Ariane 5 flight 501 failure-a
system engineering perspective”. In: 1997 Workshop on Engineer-
ing of Computer-Based Systems (ECBS '97), March 24-28, 1997, Mon-
terey, CA, USA. 1997, pp. 339-246. DOI: 10.1109/ECBS.1997.
581900. URL: https://doi.org/10.1109/ECBS.1997.
581900.

Laurent Mauborgne. “AstrEe: Verification of Absence of Run-
time Error”. In: Building the Information Society. Springer, 2004,
pp- 385-392.

Leonardo MendonCca de Moura and Nikolaj Bjerner. “Z3: An
Efficient SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings. 2008, pp. 337-340. DOI: 10 . 1007 / 978 -3 -
540-78800-3_24. URL: https://doi.org/10.1007/978-
3-540-78800-3_24.

Antoine Miné, Jason Breck, and Thomas W. Reps. “An Algorithm
Inspired by Constraint Solvers to Infer Inductive Invariants in
Numeric Programs”. In: Programming Languages and Systems - 25th
European Symposium on Programming, ESOP 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceed-
ings. 2016, pp. 560-588. DOI: 10 .1007/978-3-662-49498~

http://dx.doi.org/10.1145/6490.6496
http://doi.acm.org/10.1145/6490.6496
http://doi.acm.org/10.1145/6490.6496
http://dx.doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/ECBS.1997.581900
http://dx.doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ECBS.1997.581900
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/978-3-662-49498-1_22

142

BIBLIOGRAPHY

[Min06]

[Min10]
[Min67]

[Mon10]

[MS04]

[Nec+02]

[OBP16]

[OBP17]

[O1i+18]

1_22.URL: https://doi.org/10.1007/978-3-662-
49498-1_22.

Antoine Miné. “The octagon abstract domain”. In: Higher-Order
and Symbolic Computation 19.1 (2006), pp. 31-100. DOI1: 10.1007/
s10990-006-8609-1. URL: https://doi.org/10.1007/
$s10990-006-8609-1.

Hermann Minkowski. Geometrie der zahlen. Vol. 40. 1910.

Marvin L Minsky. Computation: finite and infinite machines. Prentice-
Hall, Inc., 1967.

David Monniaux. “Quantifier Elimination by Lazy Model Enu-
meration”. In: Computer Aided Verification, 22nd International Con-
ference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings.
2010, pp. 585-599. DOI: 10.1007/978-3-642-14295-6_51.
URL: https://doi.org/10.1007/978-3-642-14295-
6_51.

Markus Miiller-Olm and Helmut Seidl. “A Note on Karr’s Al-
gorithm”. In: Automata, Languages and Programming: 31st Inter-
national Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings. 2004, pp. 1016-1028. DOI: 10.1007/978-3-540~
27836-8_85. URL: https://doi.org/10.1007/978-3~
540-27836-8_85.

George C. Necula et al. “CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs”. In: Compiler
Construction, 11th International Conference, CC 2002, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings. 2002,
pp-213-228.DO1: 10.1007/3-540-45937-5_16. URL: https:
//doi.org/10.1007/3-540-45937-5_16.

Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. “Poly-
nomial Invariants by Linear Algebra”. In: Automated Technology
for Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings. 2016, pp. 479—
494. DOI: 10.1007/978-3-319-46520-3_30. URL: https:

//doi.org/10.1007/978-3-319-46520-3_30.

Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. “Syn-
thesizing Invariants by Solving Solvable Loops”. In: Automated
Technology for Verification and Analysis - 15th International Sympo-
sium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings. 2017,
pp.32ﬁ34&1ﬂﬂ:10.1007/978—3—319—68167—2_22.URU
https://doi.org/10.1007/978-3-319-68167-2_22.

Steven de Oliveira et al. “Left-eigenvectors are certificates of the
Orbit Problem (to be submitted)”. In: CoRR abs/1803.09511 (2018).
arXiv: 1803.09511. URL: http://arxiv.org/abs/1803.

09511.

http://dx.doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/978-3-662-49498-1_22
https://doi.org/10.1007/978-3-662-49498-1_22
https://doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
http://dx.doi.org/10.1007/978-3-540-27836-8_85
http://dx.doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/978-3-540-27836-8_85
http://dx.doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-46520-3_30
http://dx.doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
http://arxiv.org/abs/1803.09511
http://arxiv.org/abs/1803.09511
http://arxiv.org/abs/1803.09511

BIBLIOGRAPHY 143

[OPB] Steven de Oliveira, Virgile Prevosto, and Saddek Bensalem. “CaFE:
un model-checker collaboratif”. In: Approches Formelles dans I’ Assistance
au Développement de Logiciels 2017, Proceedings ().

[PC99] Victor Y. Pan and Zhao Q. Chen. “The Complexity of the Ma-
trix Eigenproblem”. In: Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia,
USA. 1999, pp. 507-516.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977. 1977, pp. 46-57. DOI:
10.1109/SFCS.1977.32. URL: http://dx.doi.org/10.
1109/SFCS.1977.32.

[Pri57] A. N. Prior. “Time and Modality”. In: Clarendon Press (1957).

[RG13] Pierre Roux and Pierre-Loic Garoche. “Integrating Policy Itera-
tions in Abstract Interpreters”. In: Automated Technology for Ver-
ification and Analysis - 11th International Symposium, ATVA 2013,
Hanoi, Vietnam, October 15-18, 2013. Proceedings. 2013, pp. 240-
254. DOI: 10.1007/978-3-319-02444-8_18. URL: https:
//doi.org/10.1007/978-3-319-02444-8_18.

[Ric53] Henry Gordon Rice. “Classes of recursively enumerable sets and
their decision problems”. In: Transactions of the American Mathe-
matical Society 74.2 (1953), pp. 358-366.

[RKO07] Enric Rodriguez-Carbonell and Deepak Kapur. “Generating all
polynomial invariants in simple loops”. In: J. Symb. Comput. 42.4
(2007), pp. 443-476.DOI1: 10.1016/73.3sc.2007.01.002. URL:
https://doi.org/10.1016/73.3sc.2007.01.002.

[Rou+12] Pierre Roux et al. “A generic ellipsoid abstract domain for lin-
ear time invariant systems”. In: Hybrid Systems: Computation and
Control (part of CPS Week 2012), HSCC’12, Beijing, China, April 17-
19, 2012. 2012, pp. 105-114. DOI: 10.1145/2185632.2185651.
URL: http://doi.acm.org/10.1145/2185632.2185651.

[Ser+12] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address
Sanity Checker”. In: 2012 USENIX Annual Technical Conference,
Boston, MA, USA, June 13-15,2012.2012, pp. 309-318. URL: https:
//www .usenix .org/conference/atcl2/technical -
sessions/presentation/serebryany.

[SKV17] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov.
“E-ACSL, a Runtime Verification Tool for Safety and Security of
C Programs (tool paper)”. In: RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools, September 15, 2017,
Seattle, WA, USA. 2017, pp. 164-173. URL: http://www.easychair.
org/publications/paper/t6tV.

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-319-02444-8_18
https://doi.org/10.1007/978-3-319-02444-8_18
https://doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1016/j.jsc.2007.01.002
http://dx.doi.org/10.1145/2185632.2185651
http://doi.acm.org/10.1145/2185632.2185651
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://www.easychair.org/publications/paper/t6tV
http://www.easychair.org/publications/paper/t6tV

144

BIBLIOGRAPHY

[SP11]

[Spo82]
[Ste+08]
[Ste89]

[SZ+65]

[Ven12]

[Wag+06]

[WBR13]

N. Stouls and V. Prevosto. Aorai plug-in tutorial, version Nitrogen-
20111001. http:// frama—-c.com/download/ frama—-c-
aorai-manual .pdf. Oct. 2011.

Fausto Spoto. “Julia: A generic static analyser for the java byte-
code”. In: Part XXX. Citeseer. 1982.

William Stein et al. “Sage: Open source mathematical software”.
In: 7 December 2009 (2008).

W-H Steeb. “A note on Carleman linearization”. In: Physics Let-
ters A 140.6 (1989), pp. 336-338.

Andrzej Schinzel, Hans Zassenhaus, et al. “A refinement of two
theorems of Kronecker”. In: Michigan Math. | 12 (1965), pp. 81-85.

Arnaud Venet. “The Gauge Domain: Scalable Analysis of Linear
Inequality Invariants”. In: Computer Aided Verification - 24th Inter-
national Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings. 2012, pp. 139-154. DOI: 10 . 1007 /978 -3~ 642 -
31424-7_15. URL: https://doi.org/10.1007/978-3-
642-31424-7_15.

Ferdinand Wagner et al. Modeling software with finite state machines:
a practical approach. CRC Press, 2006.

John Henry Wilkinson, Friedrich Ludwig Bauer, and C Reinsch.
Linear algebra. Vol. 2. Springer, 2013.

http://frama-c.com/download/frama-c-aorai-manual.pdf
http://frama-c.com/download/frama-c-aorai-manual.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://dx.doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15

Appendix A

Pilat architecture

A.1 The Ring signature

module type Ring = sig

(» type of elements of the ring x*)
type t

(# neutral elements for the addition and the
multiplication %)

val zero : t

val one : t

(+ Basic operations +)

val add : t -> t —-> t
val sub : t -> t —> t
val mul : t -> t -> ¢t
val div t >t -> t

(# Comparison of elements %)
val equal : t -> t -> bool
val leq : t -> t —-> bool

val geq: t —-> t —-> bool

val 1t : t —> t —-> bool

val gt : t -> t —-> bool

val compare t -=> t —-> 1int

(# Printers #)

val pp_print : Format.formatter -> t —-> unit
val to_str : t —-> string

val of_str : string —-> t

end

A.2 The Matrix signature

module type Ring = sig

(+ type of elements of the ring x)
type t

145

146 Appendix A. Pilat architecture

(+ neutral elements for the addition and the
multiplication x)

val zero : t

val one : t

(# Basic operations %)

val add : t —> t —> t
val sub : t -> t —> t
val mul : t —> t -> t
val div t >t >t

(+ Comparison of elements x*)
val equal : t —> t —-> bool
val leq : t —> t —> bool

val geg: t -> t —-> bool
val 1t : t -> t —-> bool
val gt : t -> t —-> bool
val compare t —> t —> int

(# Printers #*)

val pp_print : Format.formatter -> t —-> unit
val to_str : t —-> string

val of_str : string —-> t

end

A.3 The Polynomial signature

module type Ring = sig

(x type of elements of the ring x*)
type ¢

(# neutral elements for the addition and the
multiplication %)

val zero : t

val one : t

(+ Basic operations %)

val add : t —> t -> t
val sub : t —> t —-> t
val mul : t -> t —-> t
val div t >t ->t

(+ Comparison of elements x)
val equal : t -> t —> bool
val leg : t -> t —=> bool

val geqg: t -> t —-> bool
val 1t : t -> t —-> bool
val gt : t -> t —-> bool
val compare t -> t —-> int

(# Printers =)
val pp_print : Format.formatter —-> t —-> unit
val to_str : t —-> string

A.3. The Polynomial signature 147

val of_str : string -> t

end

149

Appendix B

Pilat results on deterministic and
non deterministic loops

B.1 Example1

int main() {

float Xx,y;

while (x < 4) {
0.68 » (x-y);
2x0.68*y + x;

X

y
}

return 1;

}
Invariant generated : —cst < 1. % (z*z)+ 1. % (y *xy) < cst

B.2 Dampened oscillator

int main() {
float x0,x1,tx0,tx1;
while (1) {

tx0 = x0 + 0.01 *» x1;

tx1 -0.1 * x0 + 0.99*x1;
x0 = tx0;
x1 = tx1;

}

return 1;

}

Invariant generated :
—cst < (1. % (21 % 20) + 10. % (z0* 20)) + 1. % (z1l x x1) < cst

B.3 Harmonic oscillator

int main() {
float x0,x1,tx0,tx1;
while (1) {
tx0 = 0.95 « x0 + 0.09975 * xI;

150 Appendix B. Pilat results on deterministic and non deterministic loops

txl = -0.1 » x0 + 0.95xx1;
x0 = tx0;
x1 = tx1;

}

Invariant generated :
—cst < 1.00250626566 * (x0 % 20) + 1. % (z1 x x1) < est

B.4 Symplectic SEU Oscillator

int main() {
float v, x;
while (v >= 1/2) {
x = (1 - 0.05) « x+ (0.1 - 0.00025) * v;
-0.1 *x+(1-0.05)*x v ;

v

Invariant generated : —cst < 0.105* (x*v)+1.05% (v*v)+ 1. % (v*z) < cst

B.5 [AGG12] filter

float float_interval(float, float);

int main() {
float x,y;
while (1) {
x = (0.75) * x — (0.125)x y;
Yy = x;
}

return 0;

Invariants generated : —cst < —6.xx + 1. xy < cst

B.6 Simple filter

int main() {
float x,y;
float k;
while (x < 4){
k=float_interval(-0.1,0.1); /x 0 =%/
x = 0.68 x (x-y) + k;
y = 2x0.68*xy + x;

return 1;

Invariant generated : |1. (z * z) + 1. % (y * y)| < 14.892578125
B.7 Example 3

B.8. Linear filter 151

int main() {
float sO0 = 0,81 = 0, r;

while (1) {
r = 1.5%xs0 - 0.7+«s1 + float_interval(-0.1,0.1);
sl = s0;
sO0 = r;

}

return 0;

}

Invariant generated : |(—2.14285714286 * (s1 * s0) + 1.42857142857 * (s0 =
50)) + 1. % (s1 % s1)| < 0.830078125;

B.8 Linear filter

int main() {
float sO = 0,s1 = 0, r;
int N = 50;
while (N > 0) {
r = 1.5%s0 - 0.7+«s1 + float_interval(-1.6,1.6);

sl = s0;
s0 = r;
N-—;

}

return 0;

}

Invariant generated : |(—2.14285714286 % (s0%s1) +1.42857142857 % (s1%s1)) +
L. % (s0 % s0)| < 137.451171875

B.9 Lead lag controller

int main() {
float x0p,xlp,x0,x1;
while (1) {/~*
x1 = 0.01%x0 + x1;
x0 = 0.499xx0 - 0.05«x1 4+ 0.0005%«x0 + float_interval(-1,1);
*/
x0p = x0; xlp = x1;

x0 0.499xx0p — 0.05xxIp + float_interval(-1,1);
x1 = 0.010xx0p + xI1p;

}

return 1;

Invariants generated :

152 Appendix B. Pilat results on deterministic and non deterministic loops

00220+ 1. x21 <=70.1172
10. x 20+ 1. %21 <= 20.1172

B.10 Gaussian regulator

int main() {
float x0,x1,x2,tx0,tx1,tx2,1in;

while (1) {
in = float_interval(-1,1);
tx0 = 0.9379 » x0 - 0.0381 * xI - 0.0414 « x2 + 0.0237 % 1in;
txl = -0.0404 *« x0 + 0.968 * xI - 0.0179 = x2 4+ 0.0143 * 1in;
tx2 = 0.0142 = x0 — 0.0197 = xI + 0.9823 * x2 4+ 0.0077 * in;
x0 = tx0;
x1 = tx1;
x2 = tx2;

}

return 0;

Invariants generated :

|(1.2187798948 * 20 + 1.16137161588 * 1) + 1. * 22| < 1.171875
| —2.45498840354 % 21 % 20 4+ —0.788574527791 * 22 % £0 + 0.868152061813 * x0 *
20+ 1.12295787049 * 22 % 21 4 1.73559323995 * x1 * 21 + 1. * 22 x 22| < 10.7422

B.11 Controller

int main() {
float x0,x1,x2,x3,tx0,tx1l,tx2,tx3,1n0,1inl;

while (1) {
in0 = float_interval(-1,1);
inl = float_interval(-1,1);
tx0 = 0.6227 » x0 + 0.3871 = x1 — 0.113 x x2 + 0.0102 » x3
+ 0.3064 « in0O + 0.1826 *x 1inl;
txl = -0.3407 » x0 + 0.9103 « xI - 0.3388 % x2 + 0.0649 » x3
- 0.0054 * in0O + 0.6731 % 1inlI;
tx2 = 0.0918 x x0 - 0.0265 * x1 — 0.7319 x x2 + 0.2669 * x3
+ 0.0494 « in0O + 1.6138 * 1inl;
tx3 = 0.2643 » x0 - 0.1298 » x1 - 0.9903 * x2 + 0.3331 * x3
- 0.0531 % in0O + 0.4012 x inlI;
x0 = tx0;
x1 = txI1;
X2 = tx2;
x3 = tx3;
}
return 1;

|—0.00203592622443+21%20+0.0881698609486% 22 x0+—0.0355121282196
23x2040.000315277812672+20%2x0+—0.284681200032x22x214-0.114660896235%

B.12. Low pass filter 153

x3*xx14+0.00328678028134 xx1*xx1+—4.96561965553 x x3* x2+6.16434464085 *
22 % 22+ 1. % 23 * 23] < 20.166015625;

| —0.00861093083991 21 xx0+40.298520354653 x x2x x0+ —0.12685346 1 757 * 13 *
20+0.00193714038684 x x0 *x 0+ —0.418765740617 * 2 x x1 + 0.190035991969 *
x3* 21 +0.00760806829668 * x1 x x1 + —4.0401517826 * x3 * 2 + 3.86658391065 *
22 % 22+ 1. % 23 * 23] < 18.212890625;

| —0.0289556589751 « 21 * 20+ 0.339803909038 * 2 £0 + —0.218194795294 % 3 *
204 0.0119022421734 * 20 x 20 + —0.413335822158 x x2 * x1 + 0.265411087703 *
x3xx1+0.017610761369 * x1 *x x1 4+ —3.11468390967 * x3 * 2 4+ 2.42531396428 *
22 x 22+ 1. % 23 * 3] < 5.17578125;

| —0.0177560641098+x0+-0.0573304481174%x1+—2.48280982777 22+ 1.x 23| <
5005.46875;

| —0.109097397647 x 20+ 0.132705543852 x x1 4+ —1.55734195483 x 22+ 1. x 23| <
582.03125;

B.12 Low pass filter

int main() {
float x0,x1,x2,x3,x4,tx0,tx1,tx2,tx3,tx4,1in0;

while (1) {

in0 = float_interval(-1,1);

x0 = 0.4250 % tx0 + 0.8131 x 1in0;

x1 = 0.3167 * tx0 + 0.1016 * tx1 — 0.4444x tx2
+ 0.1807 = 1in0;

x2 = 0.1278 x tx0 + 0.4444 x tx1 +0.8207 * tx2
+ 0.0729 % 1in0;

x3 = 0.0365 % tx0 + 0.1270 » tx1 + 0.5202 * tx2
+ 0.4163 * tx3 - 0.5714 » tx4 + 0.0208 x in0O;

x4 = 0.0147 * tx0 + 0.0512 » txI + 0.2099 x tx2
+ 0.57104 x tx3 + 0.7694 % tx4 + 0.0084 % 1in0;

tx0 = x0;
txl = x1;
tx2 = x2;
tx3 = x3;
tx4d = x4;

}

Invariants generated : |1.00164325052*tx1%t2x040.000140144389337 * tx2
tx0+—1.6191550573*tx3xtx04+—1.00126210564 *tx4*tx0+0.72511353991 +tx0*
tx042.62046247703 xtx2+txl+—0.618060865742 xtax3 *txl 4+ —2.00110233268 *
txd*tx1+1.00110265182*tx1+tx1+1.00020053093 *tx3*tx2+—2.61878326237 *
trd*tr2+2.61995131748*tx2xtx2+0.617955897795*txd*tx3+0.999369968498 *
te3 x tx3 + 1. x trd x trd| <= 17.724609375;
|1.00123175519 x tal * tz0+ —0.999123490687 * tx2 * tx0 + 2.61966963703 * tz0 *
tx0+ 1.61813681368 x ta2 « twl + 1. x txl xtwl + 1. x ta2 x tr2| <= 8.642578125;

154 Appendix B. Pilat results on deterministic and non deterministic loops

ECOLE DOCTORALE

@
universite

PARIS-SACLAY

de I'information

Sciences et technologies

et de la communication (STIC)

Titre : Recherche de constance dans les routines linéaires

Mots-clefs : Vérification de programmes, génération d'invariants, model-checking, propriétés

temporelles

Résumé : La criticité des programmes dépasse
constamment de nouvelles frontiéres car
l'informatique est de plus en plus utilisée dans la
prise de décision (voitures autonomes, robots
chirurgiens, etc.). Développer des programmes
stirs et vérifier les programmes existants est
devenu indispensable.

Afin de vérifier formellement le bon
fonctionnement d'un programme donné, il faut
faire face aux défis de la mise a l'échelle et de la
décidabilité. Programmes composés de millions
de lignes de code, complexité de l'algorithme,
concurrence, et méme de simples expressions
polynomiales font partis des problémes que la
vérification formelle doit savoir gérer. Pour y
arriver, les méthodes formelles travaillent sur
des abstractions des programmes étudiés afin
d'analyser des approximations de leur
comportement.

L'analyse des boucles est un axe entier de la
vérification formelle car elles sont encore
aujourd'hui peu comprises. Certaines d'entre
elles peuvent facilement étre traitées, pourtant il
existe des exemples apparemment treés simples
mais dont le comportement n'a encore
aujourd’hui pas été résolu (on ne sait toujours
pas pourquoi la suite de Syracuse, simple
boucle linéaire, converge toujours vers 1).
L'approche la plus commune afin de gérer les
boucles de maniere approchée est I'utilisation
d'invariants de boucles, c'est a dire de relations
sur les variables manipulées par une boucle qui
sont vraies a chaque fois que la boucle
recommence.

En général, les invariants utilisent des
expressions similaires a celles utilisées dans la
boucle si elle manipule explicitement Ia
mémoire par exemple, on s'attend a utiliser des
invariants portant sur la mémoire. Cependant, il
existe des boucles contenant uniquement des
affectations linéaires qui n'admettent pas
d'invariants linéaires, mais polynomiaux.

Cette thése présente de nouvelles propriétés sur
les boucles linéaires et polynomiales. Il est déja
connu que les boucles linéaires sont
polynomialement expressives, au sens ou si
plusieurs variables évoluent linéairement dans
une boucle, alors n'importe quel monéme de ces
variables évolue linéairement. La premiere
contribution de cette thése est la caractérisation
dune classe de boucles polynomiales
équivalentes aux boucles linéaires, au sens ou il
existe une boucle linéaire avec le méme
comportement.

Ensuite, deux nouvelles méthodes de génération
d'invariants sont présentées. La premiere
méthode est basée sur l'interprétation abstraite
et s'intéresse aux filtres linéaires convergents.
Ces filtres jouent un role important dans de
nombreux systémes embarqués (par exemple
dans l'avionique) et requiérent l'utilisation de
flottants, un type de valeurs qui peut mener a
des erreurs d'imprécision. Aussi, la présence
d'affectations aléatoires dans ces filtres rend
leur analyse encore plus complexe.

La seconde méthode traite d'une approche basée
sur la génération d'invariants pour n'importe
quel type de boucles linéaires. Elle part d'un
nouveau théoréeme présenté dans cette thése qui
caractérise les invariants de boucles comme
étant les vecteurs propres du dual de la
transformation linéaire traitée. Cette méthode
est généralisée pour prendre en compte les
conditions, les boucles imbriquées et le non
déterminisme dans les affectations.

La génération d'invariants n'est pas un but en
soi, mais un moyen. Cette these s'intéresse au
genre de problémes que peut résoudre les
invariants générés par la seconde méthode. Le
premier probléme traité est probléme de l'orbite
(Kannan-Lipton Orbit problem), dont il est
possible de générer des certificats de non
accessibilité en utilisant les vecteurs propres de
la transformation considérée. En outre, les
vecteurs propres sont mis a l'épreuve en
pratique par leur utilisation dans le model-
checker CaFE basé sur la vérification de
propriétés temporelles sur des programmes C.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

ECOL

&

universite

PARIS-SACLAY

de I'information

Sciences et technologies

et de la communication (STIC)

Title : Finding constancy in linear routines

Keywords : Program verification, invariant generation, model-checking, temporal properties

Abstract : The criticality of programs
constantly reaches new boundaries as they are
relied on to take life-or-death decisions in place
of the user (autonomous cars, robot surgeon,
etc.). This raised the need to develop safe
programs and to verify the already existing
ones. Anyone willing to formally prove the
soundness of a program faces the two
challenges of scalability and undecidability.
Million of lines of code, complexity of the
algorithm, concurrency, and even simple
polynomial expressions are part of the issues
formal verification have to deal with. In order
to succeed, formal methods rely on state
abstraction to analyze approximations of the
behavior of the analyzed program.

The analysis of loops is a full axis of formal
verification, as this construction is still today
not well managed. Though some of them can
be easily handled when they perform simple
operations, there still exist some seemingly
basic loops whose behavior has not been solved
yet (the Syracuse sequence for example is
suspected to be undecidable). The most
common approach for the treatment of loops is
the use of loop invariants, i.e. relations on
variables that are true at the beginning of the
loop and after every step.

Intuitively, invariants are expected to use the
same set of expressions used in the loop: if a
loop manipulates the memory on a structure for
example, invariants will naturally use
expressions involving memory operations.
However, there exist loops containing only
linear instructions that admit only polynomial
invariants (for example, the sum on integers
can be computed by a linear loop and is a
degree 2 polynomial in n), hence using
expressions that are syntactically absent of the
loop. The intuition stated above is thus a bit
naive and we should seek for more relations
between invariants and loop instructions.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

This thesis presents new insights on loops
containing linear and polynomial instructions.
It is already known that linear loops are
polynomially expressive, in the sense that if a
variable evolves linearly, then any monomial of
this variable evolves linearly. The first
contribution of this thesis is the extraction of a
class of polynomial loops that is exactly as
expressive as linear loops, in the sense that
there exists a linear loop with the exact same
behavior.

Then, two newmethods for generating
invariants are presented.
The first method is based on abstract

interpretation and is focused on a specific kind
of linear loops called linear filters. Linear
filters play a role in many embedded systems
(plane sensors for example) and require the use
of floating point operations, that may be
imprecise and lead to errors if they are badly
handled. Also, the presence of non
deterministic assignments makes their analysis
even more complex.

The second method treats of a more generic
subject by finding a complete set of linear
invariants of linear loops that is easily
computable. This technique is based on the
linear algebra concept of eigenspace. It is
extended to deal with conditions, nested loops
and non determinism in assignments.
Generating invariants is an interesting topic,
but it is not an end in itself, it must serve a
purpose. This thesis investigates the
expressivity of invariants generated by the
second method by generating counter examples
for the Kannan-Lipton Orbit problem. It also
presents the tool PILAT implementing this
technique and compares its efficiency
technique with other state-of-the-art invariant
synthesizers. The effective usefulness of the
invariants generated by PILAT is demonstrated
by using the tool in concert with CaFE, a
model-checker for C programs based on
temporal logics.

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

