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Abstract. This paper investigates the connection between the Kannan-
Lipton Orbit Problem and the polynomial invariant generator algorithm
PILA based on eigenvectors computation. Namely, we reduce the prob-
lem of generating linear and polynomial certificates of non-reachability
for the Orbit Problem for linear transformations with coefficients in Q
to the generalized eigenvector problem. Also, we prove the existence of
such certificates for any transformation with integer coefficients, which
is not the case with rational coefficients.

1 Introduction
Finding a suitable representation of the reachable set of configurations for a given
transition system or transformation is a fundamental problem in computer sci-
ence, notably in program analysis and verification. An exact representation of
the reachable set can generally not be exactly computed. In this context, in-
variants often provide a good balance between precision, conciseness and ease
of use. Model-checking [12] and deductive verification [8] often require the user
to provide invariants in order to reach a given proof objective. In practice, for
large programs, manually writing each invariant for each loop is extremely costly
and becomes quickly infeasible. Users can rely on invariants synthesizers, that
manage to infer an over-approximation of the reachable set of configurations.
Abstract interpretation [3,1] for example is based on the propagation of abstract
values, such as e.g. intervals or octagons, that encompass the whole set of pos-
sible concrete inputs. Dynamic inference [6] tries to infer a candidate invariant
satisfied by a large amount of runtime executions. The quality of the synthesis is
here dependent of the chosen invariant pattern. Mathematical properties of spe-
cific kinds of transformations, such as the use of linear algebra properties [2,4] or
the search of algebraic dependencies [11] can elegantly facilitate the automated
search for invariants. For all of these techniques, the following issues arise:

1. they work under very specific hypotheses;
2. generated invariants may not be precise enough to succeed in proving or

disproving a given property.

As an example, [4] and [5] describe the PILA method for generating invariants
of linear transformations based on the eigenspace problem. This method relies
on the stability of left-eigenvectors of a linear transformation: a left-eigenvector



ϕ of a linear transformation f verifies ϕ◦f = λϕ for some constant λ. Depending
on the value of λ, ϕ leads to inductive invariants. For instance, if λ = 1, then
∀X,ϕ ◦ f(X) = ϕ(X), hence the relation ϕ(X) remains constant. When |λ| 6 1
(respectively |λ| > 1), then the PILA technique generates inductive invariants
of the form |ϕ(X)| 6 k (respectively |ϕ(X)| > k). All polynomial equality invari-
ants (P (X) = k) and some inequality invariants (every P such that P (X) 6 k
and a subset of P such that P (X) > k) can be generated with this technique.
PILA has been developed in the context of polynomial invariant generation, an
already widely studied topic [2,13]. One of the purposes of this article is to study
the usefulness of such invariants for solving the Kannan-Lipton Orbit Problem.

The Kannan-Lipton Orbit Problem.

A particular instance of the reachability problem is called the Kannan-Lipton
Orbit Problem [9,10], which can be stated as follows :

Given a square matrix A ∈Md(Q) of size d and
two vectors X,Y ∈ Qd, determine if there exists n such that AnX = Y .

This problem is decidable in polynomial time. In the case an instance of the
problem has no solution (in other words, Y is not reachable from X), [7] studies
the existence of non-reachability semialgebraic certificates for a given instance
of the Orbit Problem where Y is not reachable. Semialgebraic certificates are
sets described by conjunctions and disjunctions of polynomial inequalities with
integer coefficients that include the reachable set of states but not the target Y .
These certificates allow to quickly prove the non-reachability of the given vector
Y and all vectors outside of the certificate. [7] concludes on the existence of such
certificates under simple hypotheses on the eigenvalue decomposition of A.

These hypotheses are surprisingly similar to the hypotheses of PILA as, when
|λ| 6= 1, left-eigenvectors represent polynomial inequality invariants while [7] uses
certificates defined by polynomial inequalities. The PILA technique is some-
times unable to infer invariants, especially when the studied matrix is non-
diagonalizable with all its eigenvalues λ such that |λ| = 1, while [7] is able
to infer certificates. A slight extension of PILA presented in this article solves
this problem by using generalized eigenvectors which we show can be used as
certificates. Also, we shortly conclude on non diagonalizable matrices with eigen-
values λ such that |λ| = 1 and on matrices with integer coefficients. Dependeing
on the cases presented in Table 1, we will prove that:

– in the first hypothesis, there exists a linear transformation of dimension
O(n2) (resp. O(2n)) computing an equivalent image of A s. t. its eigenvectors
can be used as real certificates (resp. semialgebraic certificates) for the non
reachability of the given instance;

– in the second hypothesis, there exists a linear transformation of dimension
O(n2) (resp. O(2n)) computing an equivalent image of A such that its gen-
eralized eigenvectors can be used as real certificates (resp. semialgebraic
certificates) for the non reachability for the given instance;



Hypotheses on ma-
trix A with eigen-
value λ

Hypothesis 1

|λ| 6= 0 ∧ |λ| 6= 1

Hypothesis 2
A not diagonalizable
|λ| = 1

Hypothesis 3
A diagonalizable
|λ| = 1

Pilat [4,5] Inequality invariants Equality invariants Equality invariants
P (X) 6 0, P (X) > 0 P (X) = 0 P (X) = 0

[7] on the existence of
certificates

General existence of
a semialgebraic cer-
tificate

General existence of
a semialgebraic cer-
tificate

Necessary & suffi-
cient conditions for
the existence of a
semialgebraic certifi-
cate

Contributions – Existence of M
computing the
same image as A

– Eigenvectors of
M are certifi-
cates

– Existence of M
computing the
same image as A

– Generalized
eigenvectors of
M are certifi-
cates

– Eigenvectors can
be used as certifi-
cates under the
same conditions

Table 1: Comparaison between Pilat, the results of [7] and the contributions
of this paper.

– in a more general case, a semialgebraic certificate for the Orbit Problem in
Z always exists.

It is worth noting that to our knowledge, there exists no proof about the decid-
ability of the existence of linear certificates directly on A.

Interest of eigenvectors. The Jordan Normal form of a matrix used in [7] can
be calculated in polynomial time given eigenvectors and generalized eigenvectors.
It is however necessary to compute all eigenvectors and generalized eigenvectors
of a transformation to get the Jordan Normal form. Here, in most cases we only
need the calculation of a subset of eigenvectors.

2 Setting
Let K be a field and d ∈ N. Given two vectors u, v of same dimension, we
note 〈u, v〉 = ut.v, with . the usual dot product (i.e. the sum of the product of
each component of u and v). A linear combination of variables is defined by a
single vector ϕ such that v → 〈ϕ, v〉. Every linear transformation f : Kd → Kd
corresponds to a square matrix Af ∈ Md(K). For any vector ϕ ∈ Kd, ϕt :
Kd → K will denote a linear transformation. When the context is clear, we will
refer to Af as A. The transformation obtained by n successive applications of
a transformation f : Kd → Kd is denoted by fn and its matrix is Anf . Affine
transformations can be considered as linear transformation by adding an extra
dimension. For example, the transformation f(x) = x + 1 can be considered



equivalent to the transformation g(x,1) = (x + 1,1). In this way, every affine
transformation also admits a unique matrix representation.

Definition 1 Let f : Kd → Kd be a linear transformation and A its associated
matrix. Then, ϕ ∈ Kd (respectively ϕ ∈ Kd → K) is called a λ-right-eigenvector
(resp. λ-left-eigenvector) and λ its corresponding eigenvalue if A∗ϕ = λϕ (resp.
ϕt ∗A = λϕt).

When a concept can be applied to either left or right-eigenvectors, we will simply
refer to them as eigenvectors.

Definition 2 A family of linked generalized λ-eigenvectors Ff = {e0, ..., ek}
for the transformation f are vectors verifying for all i 6 k, f(e0) = λe0 and
f(ei) = λei + ei−1

The Orbit Problem. This article focuses on A ⊂ C, the field of algebraic
numbers. Elements of A are roots of polynomials with integer coefficients. Indeed,
the linear transformations we consider are in Qd → Qd, thus their eigenvalues
(as roots of the characteristic polynomial) are in A. Let f : Qd → Qd be a
linear transformation. We refer to the Orbit Problem of Af with an initial vector
X ∈ Qd and a target vector Y ∈ Qd as O(A,X, Y ). In other words, O(A,X, Y ) =
(∃n ∈ N.Y = AnX).

Definition 3 A non-reachability certificate or just certificate is a couple (N,P ) ∈
N× P(Qd) of an instance O(A,X, Y ) such that:

– ∀n ∈ N, n < N ⇒ AnX 6= Y
– ∀n ∈ N, n > N ⇒ AnX ∈ P
– Y /∈ P

N is called the certificate index and P the certificate set.

When the certificate set is described by conjunctions and disjunctions of lin-
ear (resp. polynomial) combinations of variables, the certificate is called linear
(resp. polynomial). Irrational, semialgebraic and rational certificates are linear or
polynomial certificates whose coefficients are respectively irrationals, algebraic
integers or rationals.

Semi-algebraic certificates, are always equivalent to rational certificates. In-
deed, every coefficient ϕi ∈ A is nullified by a polynomial Q with integer coeffi-
cients. It is then possible to replace ϕi by a free variable that is constrained to
be a root of Q. For example, P = {x|

√
2x 6 2} = {x|∃y.y2 = 2∧y > 0∧yx 6 2}.

Remarks. This definition of certificates is slightly different than the notion of
certificates of [7] as it does not require an inductivity criterion. We have choosen
this notation so as to simplify the article.

The certificate sets we generate are future invariants of the transformation,
in the sense that fn(X) eventually reaches the set for some n and always remains
in it, whereas Y is outside the invariant. Different choices of X and Y may delay



the number of iterations needed to reach it. The certificate index solves this
issue by expressing the number of iterations necessary for fn(X) to reach the
certificate set. This information is crucial for the practical use of certificates, as
a solver can use it to shorten its analysis.

The existence of such a couple implies the non reachability of Y as AnX is
either different from Y or belongs to a set to which Y does not. For example, if
Y does not belong to the reachable set of states R = {AnX | n > 0}, the couple
(0, R) is a certificate. However, typically, R can not be described in a non-
enumerative way. We are interested in simple certificates, i.e. where proving that
the objective Y does not belong to the reachable set of states is straightforward.
That means that membership in P should be easy to solve. For example, let
R′ = {(v1, ..., vn) ∈ Qn : v1 + v2 > 0} and assume R ⊂ R′. Testing whether Y is
in R′ or not is easy as this set is described by a linear combination of variables.
If Y /∈ R′, then R′ is generally a better (simpler) certificate set than R. On the
other hand, finding a good certificate index may be harder. Its search is studied
in section 3.1.

3 Invariants by generalized eigenvectors

3.1 Certificate sets of the rational Orbit Problem

The decidability of the existence or the non-existence of semialgebraic certificates
for the Orbit Problem for rational linear transformations is proven in [7]. It
classifies four categories of rational matrices A:

– A admits null eigenvalues;
– A has at least an eigenvalue of modulus strictly greater or less than 1;
– A has all its eigenvalues of modulus 1, but it is not diagonalisable;
– A has all its eigenvalue of modulus 1 and is diagonalisable.

In the second case, linear transformations always admit a non reachability
certificate if the Orbit problem has no solution. The intuition behind this result
is to consider the Jordan normal form J of the matrix A. Let V be a vector
of variables and VJ the vector of variables in the base of J . In this form, there
exists a variable vJ (representing a linear combination of variables of V ) such
that J ∗ VJ |vJ = λvJ . Applied k times, the new value of vJ is λkvJ , which
diverges towards infinity or converges towards 0 when |λ| 6= 1. Checking if a
value y is reachable or not can then be done by checking if there exists k ∈ N
such that λkvJ = y. We are now left to compute those certificates.

Case 1: there exist null eigenvalues

This particular case leads to degenerate instances of the orbit problem. When a
linear transformation admits a null eigenvalue, there exists a linear combination
of variables that is always null. In other words, there exists a variable v that
can be expressed as a linear combination of the other variables. Therefore, this
variable doesn’t provide any useful information on the transformation other than



an easily checkable constraint on v. If the linear constraint is satisfied, we get
rid of this case by using Lemma 6 of [7], stating the following:

Lemma 1 The problem of generating non-reachability certificates for an orbit
instance O(A,X, Y ) can be reduced to the problem of generating reachability
certificates for an orbit instance O(A′, X ′, Y ′) where A′ is invertible.

Case 2: there exist eigenvalues λ and |λ| 6= 1.
Real eigenvalues. The key of the following property lies in [5], stating that λ-
left eigenvectors ϕ of a linear transformation A are its invariants. More precisely,
we can see that if ϕ is a left-eigenvector of A, then by definition the following
holds:

∀v ∈ Kd, 〈ϕ,Av〉 = λ 〈ϕ, v〉 (1)

If |λ| > 1 (resp. |λ| < 1), then the sequence (| 〈ϕ,Anv〉 |) (for n ∈ N) is strictly
increasing (resp. strictly decreasing),

Property 1 Let A ∈ Md(Q) a linear transformation and O(A,X, Y ) an in-
stance of the Orbit problem with no solution. Searching for a non-reachability
certificate of an instance of the Orbit problem when A admits real eigenvalues
λ such that |λ| 6= 0 and |λ| 6= 1 can be reduced to computing the eigenvector
decomposition of A.

More precisely, if there exists ϕ a λ-left-eigenvector of A with |λ| 6= 0 and |λ| 6=
1, then the couple (N,P ) defined as follows is a non-reachability certificate of
O(A,X, Y ).

1. If | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 | = 0, then N = 0 and P = {v : 〈ϕ, v〉 6= 0}
2. If | 〈ϕ,X〉 | = 0 and | 〈ϕ, Y 〉 | 6= 0, then N = 0 and P = {v : 〈ϕ, v〉 = 0}.
3. If | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 | 6= 0, N = max(1, b ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)ln(|λ|) c + 1)

and
– If |λ| > 1, then P = {v : | 〈ϕ, v〉 | > |λ. 〈ϕ, Y 〉 |}.
– If |λ| < 1, then P = {v : | 〈ϕ, v〉 | 6 |λ. 〈ϕ, Y 〉 |}.

4. Otherwise, if d > 1 there exist a transformation B ∈Md−1(Q) such that the
problem of finding a certificate for O(A,X, Y ) can be reduced to the problem
of finding a certificate for O(B,X ′, Y ′) with X ′ and Y ′ ∈ Qd−1 .
If d = 1, then O(A,X, Y ) has a solution.

The certificate is linear iff λ ∈ Q.

Proof. Let ϕ be a left-eigenvector of A associated to the eigenvalue λ. We know
that for all v, 〈ϕ, v〉 = k ⇒ 〈ϕ,Av〉 = λ.k. Let Un = | 〈ϕ,AnX〉 | be the n-th
reachable state from X. If |λ| < 1 (resp. |λ| > 1), then (Un) is strictly decreasing
(resp. strictly increasing).

1. Let kv = | 〈ϕ, v〉 |. If kX 6= 0 and kY = 0, then the sequence (Un) never
reaches kY , as for all n, Un 6= 0. In other words, |Un| > 0 for all n ∈ N. Then
it is clear that P = {X : | 〈ϕ,X〉 | 6= 0} is a valid certificate set of index
N = 0.



2. Similarly, if kX = 0 and kY 6= 0, then P = {X : | 〈ϕ,X〉 | = 0} and N = 0.
3. Assume now that kX 6= 0 and kY 6= 0. If kX < kY and |λ| < 1 (respectively
kX > kY and |λ| > 1), then (1, {v : | 〈ϕ, v〉 | 6 |λ|.kY }) is a valid certificate
set (respectively (1, {v : | 〈ϕ, v〉 | > |λ|.kY })). Otherwise, let us assume |λ| <
1 and kX ≥ kY . Un is strictly decreasing, so there exist a N such that
UN > kY and UN+1 < kY . This implies that Y can only be reachable after a
finite number of iterations N . We also have that UN+1 > |λ|.kY and UN+2 <
|λ|.kY . If for all n < N + 1, Y 6= AnX, we can define P = {v : | 〈ϕ, v〉 | <
|λ|.kY }, and obtain Y /∈ P and {AN+1+nX|n ∈ N} ⊂ P . Therefore, the
couple (N + 1, P ) is a non-reachability certificate of O(A,X, Y ). A similar
proof for |λ| > 1 is valid as the sequence Un is now strictly increasing and
the couple (N, {| 〈ϕ,X〉 | > |λ|.kY }) is the corresponding certificate.
We will now study the exact value of N . If Y is reachable, then there exists
a unique value of N such that |λ|N | 〈ϕ,X〉 | = kY . This value is precisely
ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)

ln(|λ|) . If for every value of n 6 N , Y is not reached and as Y
does not belong to the certificate set P , the couple (max(1, bNc + 1), P ) is
a non-reachability certificate.

4. Assume kX = kY = 0. In this case for every n, 〈ϕ,AnX〉 = 0. There exists
a base B of the transformation in which there exists a variable v which
remains null for every iteration of the transformation. In other words, there
exist A′, Q such that A′ = Q.A.Q−1.
Assume d > 1 and let B′ = A′|V \v

and Q′ = Q|V \v the transformations
restricted to all variables but v (by removing both the associated line and
column). Finding a certificate for A is reduced to finding a certificate for
B = Q′−1B′Q′.
If d = 1 and there exist a linear combination ϕ of X such that 〈ϕ,X〉 = 0,
then X = 0. Similarly, Y = 0.

Concerning the linearity of the certificate, if λ ∈ Q, then every coefficient
of ϕ also belongs to Q. Indeed A has rational coefficients, so does ϕA = λ.ϕ.
Similarly, if ϕ has rational coefficients, ϕ.A = λ.ϕ also does.

In the case of kX 6= 0 and kY 6= 0, we also have to get rid of the absolute value
around 〈ϕ, v〉 in the definition of the certificate set. If |λ| > 1, the certificate set
{v : (〈ϕ, v〉 > |λ 〈ϕ, Y 〉 |) ∧ (〈ϕ, v〉 6 −| 〈ϕ, Y 〉 |)} is linear. A similar set can be
found for |λ| < 1. �

Certificate index. Being able to minimize the number of necessary unrollings
to prove the non reachability is useful. In this regard, notice that the certificate
index value N of Property 1 is such that for every n < N , 〈ϕ,AnX〉 /∈ P . In
other words, it is minimal for its associated certificate set.

Example. Consider the Orbit Problem O(A,X, Y ) with

A =


0 3 0 0
−3 3 1 0
0 0 2 1
1 1 0 1





A admits two real eigenvalues λ1 ≈ 0.642 and λ2 ≈ 2.48 respectively as-
sociated to the left-eigenvectors ϕ1 = (−0.522, 0.355,−0.261, 0.73) and ϕ2 =
(0.231,−0.36,−0.749,−0.506). This is enough to build two preliminary cer-
tificate sets that only depend on Y : P1 = {v.| 〈ϕ1, v〉 | 6 λ1.| 〈ϕ1, Y 〉 |} and
P2 = {v.| 〈ϕ2, v〉 | > λ2.| 〈ϕ2, Y 〉 |}. Those can be used for any initial valuation
of X.

Let’s now set X = (1, 1, 1, 1) and Y = (−9,−7, 28, 7). We have then

– 〈ϕ1, X〉 = 0.302 and 〈ϕ1, Y 〉 = 0.015, so N = 7.
– 〈ϕ2, X〉 = −1.384 and 〈ϕ2, Y 〉 = −24.073, so N = 4.

We can easily verify that for any n 6 7, AnX 6= Y , so the certificates (7, P1)
and (4, P2) are sufficient to prove the non reachability of Y .

Complex eigenvalues. The treatment of complex eigenvalues can be reduced
to the Case 1 by the elevation method described in [4]. The idea is simple : if
variables evolves linearly (or affinely) then any monomial of those variables also
evolves linearly (or affinely). For example, given f(x) = x + 1, then the new
value of x2 after application of f is (x + 1)2 = x2 + 2x + 1, which is an affine
combination of x2, x and 1. f can be elevated to the degree 2 by expressing this
new monomial : f2(x2, x) = (x2 + 2x+ 1, x+ 1).

Definition 4 Let A ∈Md(K) . We denote Ψk(A) the elevation matrix such that
∀X ∈ Kn, Ψk(A).p(X) = p(A.X), with p ∈ (K[X]k) a polynomial associating X
to all possible monomials of degree k or lower.
By extension, we denote Ψk(v) a vector v elevated to the degree k.

A and Ψd(A) represents the same application, except that Ψd(A) also calcu-
lates monomial values of variables manipulated by A. Hence, certificates of
O(Ψd(A), Ψd(X), Ψd(Y )) are also certificates for O(A,X, Y ), We also have the
following property [4]:

Property 2 Let A ∈ Md(Q), Λ(M) the eigenvalue set of a matrix M and k
an integer. Then for any product p of k or less elements of Λ(A), p ∈ Λ(Ψk(A))
where Ψk(A) is the elevation of A to the degree k.

The product of all eigenvalues is the determinant of the transformation, which
is by construction a rational. The elevation to the degree n where n is the size
of the matrix admits then at least one rational eigenvalue. We can deduce from
this the following theorem.

Theorem 1 Let O(A,X, Y ) be an unsatisfiable instance of the Orbit problem
with A ∈ Mn(Q) admitting at least one eigenvalue λ ∈ C such that |λ| 6= 0 and
|λ| 6= 1. Then left eigenvectors of Ψd(A) provide :

– real linear semialgebraic certificates for d = 1 (Ψ1(A) = A) if there exist real
eigenvalues;

– real semialgebraic certificates of degree 2 for d = 2 if there exist complex
eigenvalues;



– at least one rational certificate of degree n for d = n if |det(A)| 6= 1.

Proof. We treat each case separately:

– The case where A admits real eigenvalues is treated by Property 1;
– If A admits a complex eigenvalue λ, A also admits its conjugate λ̄ as eigen-

value. By Property 2, Ψ2(A) admits λ.λ̄ as a real eigenvalue, which is treated
by Property 1;

– The product of all eigenvalues of a rational matrix is rational. As such, Ψn
necessarily admit a rational eigenvalue which implies the existence of an
associated rational eigenvector that can be used, according to Property 1,
as a certificate.

�

Remark. The image of A ∈ Md(K) is a projection of the image of Ψk(A) for
any k, and semialgebraic certificates of A are, by extension, semilinear certificates
of Ψn(A). The size of Ψk(A) is

(
d+k
k

)
, which is O(d2) when k = 2 and O(dd) when

d = k. An eigenvector computation has a polynomial time complexity (slightly
better than O(d3)). The two first cases of Theorem 1 are thus computable in
polynomial time in the number of variables.

Example. The matrix from the previous example admits two complex eigen-
value λ ≈ 1.439 + 2.712i and λ̄. As λλ̄ ≈ 9.425, it also admits a polynomial
invariant ϕ (whose size is too long to fit in this article as it manipulates 10
monomials). However, 〈ϕ,X〉 = 0.220 and 〈ϕ, Y 〉 = 195.738, thus the associated
index is 4.

Case 3: all eigenvalues have a modulus equal to 1 and the matrix is
not diagonalisable

Real eigenvalues. This case is trickier as eigenvectors do not give information
about the convergence or the divergence of the linear combination of variables
they represent. For example, let us study the orbit problem O(A,X, Y ) where A
is the matrix associated with the mapping f(x,1) = (x+2∗1,1), X = (0, 1) and
Y = (5, 1). xY is odd, thus Y is not reachable. f admits only ϕ = (0, 1) as left-
eigenvector associated to the eigenvalue λ = 1, meaning that 〈(0, 1), (x,1)〉 =
〈(0, 1), f(x,1)〉 for any x. As 〈(0, 1), (x,1)〉 = 1, we are left with the invariant
1 = 1. This invariant is clearly insufficient to prove that Y is not reachable.

f thankfully admits a generalized left-eigenvector µ = ( 1
2 , 1) associated to 1.

More precisely, µA = µ + ϕ, which implies that µAnX = (µ + nϕ).X. In other
words, we have 1

2x+ 1 = 1
2xX + 1 + n which simplifies into 1

2x = n. The couple
(3, {(x, y) : ∃n > 3, 12x = n}) is a non reachability certificate.

Property 3 Let A be a non-diagonalisable linear transformation, X a vector
and {ei}i<N N linked 1-left eigenvectors1 (i.e. e0A = e0 and for 0 < i < N ,
1 The existence of such a family with N > 1 is guaranteed by the non diagonalisability
of A.



eiA = ei + ei−1). For all 1 > i < N ,
〈
eiA

k, X
〉

= Pi(k), where Pi(k) is a
polynomial of non null degree in the variable k if and only if there exist j < i
such that 〈ej , X〉 6= 0

Proof. Let {ei}i<N a family of N linked 1-left eigenvectors. We can calculate
Pi(k) by induction on i. For i = 1, e0 verifies e0Ak = e0 + k ∗ e1. Hence,〈
e0A

k, X
〉

= 〈e0, X〉 is a polynomial of non null degree iff 〈e0, X〉 6= 0.
Assume now ei.A

k = Pi(k) is a vector of polynomials of non null degree.
Then, we have ei+1.A

k+1 = (ei+1 + ei).A
k = ei+1A

k + Pi(k) Now, let Un+1 =

Uk + Pi(n). Then for U0, Uk = U0 +
k∑
l=0

Pi(l) is a vector of polynomials of non

null degree. As well as in the case i = 1, Pi+1(k) has a non null degree if and only
if for all j < i, 〈ej , X〉 6= 0 as every polynomial expression of Pi+1(k) contains
〈ej , X〉.
�

As every polynomial eventually diverges, there exists a linear combination of
variables of X that diverges if X follows the hypothesis of this property. Oth-
erwise, [7] have shown in Lemma 6 that the existence of a certificate for such
instances is equivalent to the existence of certificates that are treated in the Case
4. Indeed, expressing a matrix A in the Jordan Normal form is exactly expressing
A in the base of eigenvectors. The hypothesis of Property 3 matches the third
part of Lemma 6 from [7].

Remark. Even if the first eigenvector is enough to represent a non-reachability
certificate, every generalized eigenvector also can. By property 3, the value of
the linear combination described by a generalized eigenvector ϕ evolves polyno-
mially, thus it eventually always decrease or increase (after the highest root of
its derivate). That is why for a given objective Y there exist a finite number of
n such that |ϕY | 6 |ϕAnX|, thus after this n, {v : |ϕv| > |ϕY |} is a certificate.

Complex eigenvalues. If λ ∈ C, we will use the same trick we used for
complex eigenvalues of Case 2. As for every complex eigenvalue λ of A, λ̄ is also
an eigenvalue, then λ.λ̄ = 1 is an eigenvalue of Ψ2(A) by property 2. Thus :

Theorem 2 Let O(A,X, Y ) be a non satisfiable instance of the Orbit Problem
such that for all eigenvalue λ of A, |λ| = 1 and A is not diagonalisable. Then
there exist a family of 1-left-eigenvectors F = {e0, ..., en} of Ψ2(A) such that for
all 1 6 i 6 n, Qi(n) = 〈ei, Ψ2(A)nΨ2(X)〉 is a non-constant polynomial if and
only if there exist j < i such that 〈ei, X〉 6= 0 and (N,P ) is a non reachability
certificate with:

– N = bmax({0} ∪ {x ∈ R.Qi(x) = 〈ei, Ψ2(Ax)Ψ2(Y )〉})c
– P = {v : | 〈ei, Ψ2(A)nΨ2(v)〉 | > |Qi(N)|}

Proof. Let O(A,X, Y ) be an instance of the Orbit Problem. We will reduce
the problem to the case where A has positive rational eigenvalues, i.e. λ = 1
and A admits a family F of left-eigenvectors of size |F| > 1 . In this case,
by Property 3 we know that there exists a linear combination of variables v



following a polynomial evolution described by Q such that deg(Q) > 0. As Q
eventually diverges, there exists a N such that for all N ′ > N , |v(AN

′
X)| >

|v(Y )|. This N is the maximum between 0 and the highest value of x such
that Q(x) = v(Y ) as, for any higher value of x, |Q(x)| > |v(Y )|. Also, the set
{v.| 〈ei, Ψ2(A)nΨ2(v)〉 | > |Q(N)|} contains all reachable configurations but does
not contain Y , thus (N,P ) is a valid certificate.

In the general case where λ ∈ C, we will use Property 2 to show that if
there exist complex eigenvalues λ such that |λ| = 1, of multiplicity m > 1 with
m 6= dim(ker(A − λId)), then Ψ2(A) admits 1 or −1 as an eigenvalue and its
multiplicitym′ > 1 6= dim(ker(Ψ2(A)−λId)). This implies directly the existence
of at least one generalized eigenvector, thus of a family of linked left-eigenvectors
of size strictly higher than 1. To this purpose, we refer to basic properties of Ψd:
Lemma 2
1. Ψk(A.B) = Ψk(A).Ψk(B)
2. Ψk(A−1) = Ψk(A)−1

Proof. 1. Ψk(A).Ψk(B)p(X) = Ψk(A).p(B.X) = p(A.B.X) = Ψk(A.B)p(X)
2. Ψk(A−1).Ψk(A).p(X) = p(A.A−1X) = p(X) so Ψk(A−1).Ψk(A) = Id.

Let J the Jordan normal form of A, i.e. there exists P such that A = P−1JP .

We have that J =


J1 0 ... 0

0
. . . . . .

...
...
. . . . . . 0

0 ... 0 Jk

, and Jk =


λk 1 ... 0

0
. . . . . .

...
...

. . . . . . 1
0 ... 0 λk


From Lemma 2, it is easy to prove that Ψd(A) = Ψd(P )−1Ψd(J)Ψd(P ). As

Ψd(A) and Ψd(J) are similar, they have the same eigenvalues. We know that
there exist v1, v2, v3 in the base of J such that

– v′1 = λ.v1 + v2
– v′2 = λ.v2
– v′3 = λ̄.v3

where v′i is the new value of vi in the base of J . Then the image of v1v3 (denoted
(v1v3)′) with respect to Ψ2(J) is v1v3+λ̄.v2.v3. Also, we know that (v2v3)′ = v2v3.
Let ϕ such that ϕ.Ψ2(J).V = v1v3.

ϕ.(Ψ2(J)− Id)V = v1v3λ̄.v2v3 − v1v3
= λ̄.v2v3

ϕ.(Ψ2(J)− Id)2V = λ̄.v2v3 − λ̄.v2v3 = 0

As this is true for any V , then ϕ.(Ψ2(J)− Id) 6= 0 and ϕ.(Ψ2(J)− Id)2 = 0.
In conclusion, ϕ is a generalized eigenvector of Ψ2(J), thus Ψ2(A) also admits a
generalized eigenvector.
�

Example. We consider the Orbit problem O(A,X, Y ) with A =

1 1 0
0 1 1
0 0 1

,

X = (−2,−1, 1)t and Y = (2, 6, 1)t. A admits as 1-generalized-left-eigenvectors:



{e0 = (0, 0, 1); e1 = (0, 1, 0); e2 = (1, 0, 0)}. By the previous property, we know
that e2Ak = e2 + k.e1 + k(k−1)

2 .e0, thus〈
e2A

k, (xX , yX ,1)
〉

= yX + kxX + k(k−1)
2

= 1
2k

2 − 5
2k − 1

As we can see in Figure 1, from k = 3, the value of x is strictly increasing
and after k = 7, the value of x is strictly superior to 2. Thus we have to check
a finite number of iterations before reaching x > 2, which is the certificate set
constraint of the non-reachability of Y . For k ∈ [0, 6], Y is not reached. The
couple (7, {(x, y,1).x > 2}) is thus a certificate of non reachability of Y .

1 2 3 4 5 6

−4
−3
−2
−1
0

1

2

k

y

Fig. 1: Graph of the polynomial y = 1
2k

2 − 5
2k − 1

Case 4: eigenvalues all have a modulus equal to 1 and the transforma-
tion is diagonalizable

Some transformations do not admit generalized eigenvectors, namely diagonal-
izable transformations. The previous theorem is then irrelevant if for every
eigenvalue λ, |λ| = 1. Such transformations are rotations : they remain in the
same set around the origin. Take as example the transformation A of Figure 2,
taken from [7]. It defines a counterclockwise rotation around the origin by an-
gle θ =arctan( 3

5 ), and θ
π is not rational. The reachable set of states from X,

i.e. {X,AX,A2X, ...} is strictly included in its closure, i.e. the set of reachable
states and their neighbourhood. As Y is not on the closure of the set, then we
can easily provide a non-reachability semi-algebraic invariant certificate of Y ,

A = 1
5

(
4 −3
3 4

)
X = (1, 0)
Y = (1.5, 0.7)
Z = (−1, 0)

−2 −1 0 1 2

•X

•Y

• Z

x

f
(x
)

Fig. 2: Closure of the reachable set of A starting with X.



that is the equation of the circle. However, we cannot give such a certificate for
Z though it is not reachable. If it were reachable, there would exist a n such
that AnX = Z, thus A2nX = X. n would also satisfy θ ∗ n = 0[2π], which is
impossible as θ

π is not rational. More generally, the closure of the reachable set
of states of diagonalisable transformations with eigenvalues of modulus 1 is a
semialgebraic set [7]. Semialgebraic certificates for such transformations exist if
and only if Y does not belong to this closure [7].

Theorem 3 For a given instance O(A,X, Y ) such that A is diagonalizable and
all its eigenvalues have a modulus of 1, eigenvectors can be used as semialgebraic
certificates iff Y is not in the closure.

Proof. Let O(A,X, Y ) be an instance of the Orbit Problem with A a diagonaliz-
able matrix only admitting eigenvalues λ such that |λ| = 1. Let ϕ an eigenvector
of A, we denote R = {v|∃k.AkX = v} the reachable set.

Lemma 3 Let (λi, ϕi) be d couples of eigenvalue / left-eigenvector of a diago-
nalizable matrix A of size d. Then R = {v|∃k, ∀1 > i > d, 〈ϕiv,=〉λki . 〈ϕi, X〉}

Proof. Let R′ = {v|∃k, ∀1 > i > d, 〈ϕi, v〉 = λki 〈ϕi, X〉}. By the definitions of R
and ϕi, the inclusion R ⊂ R′ is trivially true. Now take v ∈ R′. As there exist d
different and independent eigenvectors, v is a solution of the following relation:
∃k.Φv = (λk1x1, ...λ

k
dxd)

t, where Φ is an invertible matrix whose lines are directly
defined by eigenvectors. As Φ is invertible, there exists only one solution for each
k. As v is one of those solutions, then v ∈ R.

By lemma 3, for any i between 1 and d, every element v of R verifies
| 〈ϕi, v〉 | = | 〈ϕi, X〉 |, thus R ⊂ Rϕ = {v : | 〈ϕi, v〉 | = | 〈ϕi, X〉 |}. Note that
this inclusion is strict, as X ′ = A−1X ∈ Rϕ but X ′ /∈ R. If Y does not belong
to Rϕ, then (0, Rϕ) is a non reachability certificate. �

3.2 General existence of a certificate for the integer Orbit
Problem

The Orbit Problem is originally defined on Q. In practice, rational are not rep-
resented in computers that often requires the use of integers or floats. We will
investigate in this section the Orbit Problem for integer transformation, i.e. ma-
trices with coefficients in Z. Basic matrix operations involving divisions (such as
inversion) are forbidden in Zas it is not a field, but the only relevant operation
in our case is multiplication (does there exist a n such that AnX = Y ?) which
is consistent for integer matrices.

The following property holds for integer matrices and is fundamental for the
proof of the following theorem.

Property 4 Let A ∈Mn(Z). If all its eigenvalue λ have a modulus inferior or
equal to 1, then there exists n > 1 such that λn = λ.



Proof. Let A ∈M(Z) such that for all eigenvalue λ, |λ| 6 1.
If λ = 0, then we can conclude right away (02 = 0).
The characteristic polynomial P ∈ Z[X] of A is monic, i.e. its leading co-

efficient is 1. Thus by definition, every eigenvalue is an algebraic integer. We
will use the Kronecker theorem [14], stating that if a non null algebraic integer
α has all its rational conjugates (i.e. roots of its rational minimal polynomial)
admitting a modulus lower or equal to 1, then α is a root of unity.

Each eigenvalue λ admits a minimal rational polynomial Q. We can show
that Q necessarily divides P by performing an euclidian division : there exist
D,R ∈ Q[X] such that P (X) = Q(X)D(X)+R(X), with the degree of R strictly
inferior to Q. We know that P (λ) = 0 and Q(λ) = 0, thus R(λ) = 0. If R 6= 0,
then R is the minimal polynomial of λ as its degree is inferior to the degree of
Q, which is absurd by hypothesis. Thus, the set of rational conjuguates of λ are
roots of P , by hypothesis of modulus inferior or equal to 1. By the Kronecker
theorem, λ is a root of unity, i.e. ∃n > 1.λn = λ.
�

Theorem 4 Any non-reachable instance of the Orbit problem O(A,X, Y ) where
A ∈Mn(Z) admits a closed semi-algebraic certificate.

Proof. We already treated the existence of general certificates in the case where
the matrix has an eigenvalue whose modulus is different from 1 (Property 1)
and the case where the matrix is not diagonalizable (Property 3). We are left
with the hypothesis of the Theorem 3, which implies the hypotheses of Prop-
erty 4. Let A be a transformation such that all its eigenvalue are roots of unity.
A represents a finite-monoïd transformation, i.e. its reachable set of states is
finite. More precisely, there exist N, p such that ∀n > N,An+p = An. Let
P = {ANX,AN+1X, ..., AN+p−1X}. If Y is not reachable, then the couple (P,N)
is a non-reachability certificate. The closure of such a certificate comes from the
same eigenvalue argument. The only case we had a non-closed certificate comes
from Property 1 when |λ| 6= 0, |λ| 6= 1, | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 6= 1. As we
also have |λ| > 1 for integer matrices, the certificate set {v : | 〈ϕ, v〉 | > | 〈ϕ,X〉 |}
is a valid closed certificate set. �

4 Conclusion and future work
This paper presents new insights on the quality of certificates necessary to prove
the non-reachability of a given Orbit problem instance. In addition, in contrast
with [7], we gain simplicity and precision by not studying the Jordan normal
form of a linear transformation but only its eigenvector decomposition.

Eigenvectors are computable without knowledge of the initial state X and
the target Y . It means that certificates are intrinsequely linked only to the
transformation studied. In other words, for an instance of the Orbit Problem
O(A,X, Y ), X and Y play a minor role in the expression of certificates. As a
consequence, generalizing the result of this paper to sets of initial states and
targets should be possible.



As this article explores the Orbit Problem for rationals, it is worth noting
that certificates may not necessarily be relevant for real-life programs manipu-
lating floats. For example, the Orbit problem (x 7→ x

2 , 1, 0) has a solution for
some floating point implementations due to limited precision. The question of
certificates synthesis for such problems is also an interesting challenge.
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