
1 Unusual programs

1. Consider the following Java program :

public class Thread2 extends Thread {

public int id ;
public Thread2 bro ;
public Thread2 (int id , Thread2 bro) {

this . id = id ; this . bro = bro ; }

public void run (){
i f (this . id == 0) System . out . p r i n t (”3”) ;
else {

bro . j o i n () ;
System . out . p r i n t (”4”) ;

}
System . out . p r i n t (”0”) ;

}
}

public class Thread1 extends Thread{

public int id ;
public Thread1 (int id){ this . id = id ; }

public void run (){
i f (this . id == 0){

Thread t = new Thread2 (1 , null) ;
t . bro = new Thread2 (0 , t) ;

t . bro . s t a r t () ;
t . s t a r t () ;

}

else System . out . p r i n t (”2”) ;
}

public stat ic void main (St r ing [] a rgs){
new Thread1 (0) . s t a r t () ;
new Thread1 (1) . s t a r t () ;

}
}

Questions What are the possible outputs ?

• 32040 Y N

• 34002 Y N

• 30402 Y N

• 23040 Y N

• 40302 Y N

2. Consider the following Java program:

public class Thread1 extends Thread{

public int id ;
public int r e s u l t ;
public Thread1 bro ;

public Thread1 (int id , Thread1 bro){
this . id = id ; this . r e s u l t = −1; this . bro = bro ;

}

public void run (){
System . out . p r i n t l n (1 − this . id) ;
i f (id == 0){

bro . j o i n () ;
System . out . p r i n t l n (bro . r e s u l t) ;

}
else this . r e s u l t = 2 ;
System . out . p r i n t l n (”Bye”) ;

}

public stat ic void main (St r ing [] a rgs){
Thread1 t1 = new Thread1 (0 , null) ;
Thread1 t2 = new Thread1 (1 , t1) ;

t1 . bro = t2 ;

System . out . p r i n t l n (” He l lo ”) ;

t1 . s t a r t () ;
t2 . s t a r t () ;

}

}

Questions Give 3 valid outputs of the program.

Page 2

3. Consider the following Java program:

public class Example extends Thread{

public int counter ;
public int l i ;

public Example (int cpt , int l i){
this . counter = cpt ; this . l i = l i ;

}

public void run (){
int i ;
for (i = l i ; i <2; i ++){

System . out . p r i n t l n (” counter = ” + this . counter) ;
(new Example (this . counter +1, i + 1)) . s t a r t () ;
this . counter++;

}

System . out . p r i n t l n (” counter = ” + this . counter) ;

}

public stat ic void main (St r ing [] a rgs){

Example e = new Example (0 , 0) ;
e . s t a r t () ;

}
}

Questions A. What are the possible values of counter printed in the first line?

B. What are the possible values of counter printed in the last line?

C. How many times could the value of counter be printed ?

Page 3

2 Concurrency problems

4.
public class LinkedLis t {

private LinkedLis t next ;
private f ina l ReentrantLock l add = new ReentrantLock () ;
private f ina l ReentrantLock l remove = new ReentrantLock () ;

public LinkedLis t (){
this . next = null ;

}

public LinkedLis t add (){
l add . l o ck () ;
L inkedLis t r e s = new LinkedLis t () ;
r e s . next = this ;
l add . unlock () ;
return r e s ;

}

public LinkedLis t remove (){
l remove . l o ck () ;
i f (this == null) return null ;
L inkedLis t r e s = this . next ;
this . next = null ;
l remove . unlock () ;
return r e s ;

}

}

Questions

The implementation may deadlock Y N
The implementation may crash Y N
The function add always add at the beginning of the list Y N
The fuction remove always remove the first element of the list Y N
Using only one lock is possible Y N

Page 4

5. This exercice is here to show you what to NEVER do.

public class BankAccount {
private int balance = 0 ;
private Lock lk = new Lock () ;

int getBalance () {
l k . l o ck () ;
int ans = balance ;
l k . unlock () ;
return ans ;

}
void se tBa lance (int x) {

l k . l o ck () ;
ba lance = x ;
lk . unlock () ;

}
void withdraw (int amount) {

l k . l o ck () ;
int b = getBalance () ;
i f (amount > b) {

l k . unlock () ;
throw new WithdrawTooLargeException () ;

}
se tBa lance (b − amount) ;
l k . unlock () ;

}
}

Questions

1. Explain why, if the lock is not re-entrant, this implementation will deadlock.

2. Still considering this is not a re-entrant lock, you replace the function withdraw by :

void withdraw (int amount) {
l k . l o ck () ;
l k . unlock () ;
int b = getBalance () ;
l k . l o ck () ;
i f (amount > b) {

l k . unlock () ;
throw new WithdrawTooLargeException () ;

}
l k . unlock () ;
se tBa lance (b − amount) ;
l k . l o ck () ;
l k . unlock () ;

}

Does it work now ? Can it be improved ?

Page 5

6. We implemented a new Bank Account class trying to solve the problem.We use a class Account to
manage the bank account and a class Transaction class to manage the use of Account functions.

public class Account {
double balance ;
int id ;
Lock lock = new ReentrantLock () ;

Account (int id , double balance) {
this . id = id ;
this . ba lance = balance ;

}

boolean withdraw (double amount) {
i f (this . l o ck . tryLock ()) {

balance −= amount ;
this . l o ck . unlock () ;
return true ;

}
return fa l se ;

}

boolean depos i t (double amount) {
i f (this . l o ck . tryLock ()) {

balance += amount ;

this . l o ck . unlock () ;
return true ;

}
return fa l se ;

}

public boolean t ryTrans f e r (Account account , double amount) {
i f (this . withdraw (amount)) {

i f (account . depo s i t (amount)) {return true ;}
// e l s e d e s t i n a t i o n account busy , re fund source account .
this . d epo s i t (amount) ;
}

return fa l se ;
}

public stat ic void main (St r ing [] a rgs) {
Account a1 = new Account (1 , 500d) ;
Account a2 = new Account (2 , 500d) ;

new Thread (new Transact ion (a1 , a2 , 10d) , ” tr−1”) ;) . s t a r t () ;
new Thread (new Transact ion (a2 , a1 , 10d) , ” tr−2”) ;) . s t a r t () ;

}
}
class Transact ion implements Runnable {

private Account source , d e s t i n a t i o n ;
private double amount ;

Transact ion (Account source , Account de s t ina t i on , double amount) {
this . source = source ;
this . d e s t i n a t i o n = d e s t i n a t i o n ;

Page 6

this . amount = amount ;
}

public void run () {
while (! source . t ryTrans f e r (de s t i na t i on , amount)) ;

}

Questions

1. Unfortunately, this code is flawed. Can you explain the problem ?

2. We change the class Transaction by

class Transact ion implements Runnable {
private Account sourceAccount , des t inat ionAccount ;
private double amount ;
private f ina l stat ic Lock l = new Lock () ;

Transact ion (Account source , Account dest , double amount) {
this . source = source ;
this . d e s t i n a t i o n = dest ;
this . amount = amount ;

}

public void run () {
i f (! source . t ryTrans f e r (de s t i na t i on , amount)){

l . l o ck () ;
while (! source . t ryTrans f e r (de s t i na t i on , amount)) ;
l . unlock () ;

}
}

}

Does it work now ? If yes, explain the difference. If not, tell what is missing.

Page 7

