1 Unusual programs

1. Consider the following Java program :

public class Thread2 extends Thread {

public int id;

public Thread2 bro;

public Thread2(int id, Thread2 bro) {
this.id = id; this.bro = bro; }

public void run(){
if (this.id = 0) System.out.print(”3”);
else {
bro.join ();
System.out.print (74”7 );

}

System.out.print (707 );

}

public class Threadl extends Thread{

public int id;
public Threadl (int id){ this.id = id; }

public void run(){
if (this.id = 0){

, null);

Thread t = new Thread2 (1
t);

t.bro = new Thread2 (0,

t.bro.start ();

t.start ();
¥
else System.out.print(”2”);
¥
public static void main(String[] args){

new Threadl (0).start ();
new Threadl (1).start ();

}

Questions What are the possible outputs ?

e 32040 Y N
e 34002 Y N
e 30402 Y N
e 23040 Y N
e 40302 Y N



2. Consider the following Java program:

public class Threadl extends Thread{

public int id;
public int result;
public Threadl bro;

public Threadl (int id, Threadl bro){
this.id = id; this.result = —1; this.bro = bro;

}

public void run(){
System.out.println (1 — this.id);
if (id = 0){
bro.join ();
System.out.println (bro.result);
}
else this.result = 2;
System.out.println (”Bye” );

}

public static void main(String[] args){
Threadl t1 = new Threadl (0,null);
Threadl t2 = new Threadl (1,t1);
tl.bro = t2;
System.out.println (” Hello” );
tl.start ();
t2.start ();

}

Questions Give 3 valid outputs of the program.

Page 2



3. Consider the following Java program:

public c

Questions

lass Example extends Thread{

public int counter;
public int 1_.i;

public Example(int cpt, int 1.i){

this.counter = cpt; this.l_i = 1_i;

}

public void run(){

int 1 ;
for (i = 1.1;i<2;i4++){
System.out.println (”counter_.=." + this.counter);

(new Example(this.counter +1,i + 1)).start ();
this.counter++;

}

System.out.println (” counter_=." + this.counter);

public static void main(String[] args){

Example e = new Example (0,0);
e.start ();

A. What are the possible values of counter printed in the first line?

B. What are the possible values of counter printed in the last line?

C. How many times could the value of counter be printed ?

Page 3



2 Concurrency problems

public class LinkedList {

private LinkedList next;
private final ReentrantLock l_add = new ReentrantLock ();
private final ReentrantLock l.remove = new ReentrantLock ();

public LinkedList (){
this.next = null;
}

public LinkedList add(){
l_add .lock ();
LinkedList res = new LinkedList ();
res.next = this;
l_add .unlock ();

return res;

}

public LinkedList remove(){
l_remove.lock ();

if (this = null) return null;
LinkedList res = this.next;
this.next = null;

l_remove.unlock ();
return res;

Questions

The implementation may deadlock

The implementation may crash

The function add always add at the beginning of the list

The fuction remove always remove the first element of the list
Using only one lock is possible

o
Z 222z

Page 4



5. This exercice is here to show you what to NEVER do.

public class BankAccount {
private int balance = 0;
private Lock lk = new Lock ();

int getBalance() {
lk . lock ();
int ans = balance;
lk . unlock ();
return ans;
}
void setBalance(int x) {
lk . lock ();
balance = x;
lk . unlock ();

void withdraw (int amount) {
lk . lock ();
int b = getBalance ();
if (amount > b) {
1k . unlock ();
throw new WithdrawTooLargeException ();
}
setBalance (b — amount );
lk . unlock ();

Questions

1. Explain why, if the lock is not re-entrant, this implementation will deadlock.

2. Still considering this is not a re-entrant lock, you replace the function withdraw by :

void withdraw (int amount) {
lk . lock ();
lk . unlock ();
int b = getBalance ();
lk . lock ();
if (amount > b) {
lk . unlock ();
throw new WithdrawTooLargeException ();

1k . unlock ();
setBalance (b — amount );
lk . lock ();

lk . unlock ();

}

Does it work now ? Can it be improved 7

Page 5



6. We implemented a new Bank Account class trying to solve the problem.We use a class Account to
manage the bank account and a class Transaction class to manage the use of Account functions.

public class Account {
double balance;
int id;
Lock lock = new ReentrantLock ();

Account (int id, double balance) {
this.id = id;
this.balance = balance;

}

boolean withdraw (double amount) {
if (this.lock.tryLock()) {
balance —= amount;
this.lock.unlock ();
return true;

}

return false;

}

boolean deposit(double amount) {
if (this.lock.tryLock()) {
balance += amount;

this.lock.unlock ();
return true;

}

return false;

}

public boolean tryTransfer (Account account, double amount) {
if (this.withdraw (amount)) {
if (account.deposit(amount)) {return true;}
// else destination account busy, refund source account.
this.deposit (amount );

}

return false;

}

public static void main(String [] args) {
Account al = new Account (1, 500d);
Account a2 = new Account (2, 500d);

new Thread (new Transaction(al, a2, 10d), "tr—1");).start ();
new Thread(new Transaction (a2, al, 10d), "tr—2");).start ();

}
}
class Transaction implements Runnable {

private Account source, destination;
private double amount;

Transaction (Account source, Account destination , double amount) {

this.source = source;
this.destination = destination;

Page 6



this.amount = amount;

}

public void run() {
while (!source.tryTransfer(destination , amount));

Questions

1. Unfortunately, this code is flawed. Can you explain the problem 7

2. We change the class Transaction by
class Transaction implements Runnable {
private Account sourceAccount, destinationAccount;

private double amount;
private final static Lock 1 = new Lock();

Transaction (Account source, Account dest, double amount) {

this.source = source;
this.destination = dest;
this.amount = amount;

}

public void run() {
if (!source.tryTransfer(destination , amount)){
l.lock ();
while (!source.tryTransfer(destination, amount));
1. unlock ();

}
}

Does it work now ? If yes, explain the difference. If not, tell what is missing.

Page 7



