Synthesizing invariants by solving solvable loops

Steven de Oliveira', Saddek Bensalem?, Virgile Prevosto?

1: CEA, List 2 : Université Grenoble Alpes

1 Results
PILAT Input PILAT results Abs. Int. [2]
Program Var | Degree || # invariants |Candidate generation|Optimization Proof
(in ms) (in's) (in s)
Deterministic
Example 1 2 2 1 3 - 1.6
Dampened oscillator 2 2 1 7 - 0.036
Harmonic oscillator 2 2 1 4 - 0.035
Sympletic oscillator 2 2 1 2 - 0.008
[1] filter 2 1 1 3.5 - 0.0017
Non deterministic
Simple linear filter 2 2 1 1.5 1.3 6.5
Example 3 2 2 1 3 1.7 4.3
Linear filter 4 2 1 1.9 1
Lead-lag controller 2 1 2 2 2.5 6
Gaussian regulator 3 2 1 7 2.5 -
Controller 4 2 5 66 14 -
Low-pass filter 5 2 2 60 7 -

Performance results with our implementation. Tests have been performed on a Dell Precision M4800 with 16GB
RAM and 8 cores. The first part of the benchmark are non deterministic loops. The second part represents deterministic
loops (no optimization necesary). Tests with abstract interpretation have been performed with the fixpoint solver

described in [2] by attempting to prove goals implied by the invariants our tool synthesizes when possible.

References

1. A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite relaxation to compute accurate numerical

invariants in static analysis. Logical Methods in Computer Science, 8(1), 2012.

2. A. Miné, J. Breck, and T. Reps. An algorithm inspired by constraint solvers to infer inductive invariants in numeric programs.

FEuropean Symposium on Programming Languages and Systems, 2015.

2 Detailed results

2.1 Example 1

int main () {
float x,v;
while (x < 4) {

X =
y =
}

0.68
2%x0.68xy + x;

(x=y);

return 1;

Invariant generated : —est < 1.x (zxx) 4+ 1. x (yxy) < cst
2.2 Dampened oscillator

int main () {
float x0,x1,tx0,tx1;

while (1) {
tx0 = x0 + 0.01 * x1;
txl = -0.1 x x0 + 0.99xx1;
x0 = tx0;
x1l = tx1;

return 1;

}

Invariant generated :
—cst < (1% (21 % 20) + 10. % (20 % 20)) + 1. % (zl x z1) < est
2.3 Harmonic oscillator

int main () {
float x0,x1,tx0,tx1;

while (1) {
tx0 = 0.95 x x0 + 0.09975 x x1;
txl = -0.1 * x0 + 0.95%x1;
x0 = tx0;
x1 = tx1;

}

Invariant generated :
—cst < 1.00250626566 * (20 * 20) + 1. % (z1 x x1) < est

2.4 Symplectic SEU Oscillator

int main () {
float v, x;
while (v >= 1/2) {
x = (1 - 0.05) » x + (0.1 - 0.00025) * v;
v = -0.1 *x+(1-0.05) v ;

Invariant generated : —est < 0.105 * (z % v) + 1.05 % (v« v) + 1. * (x * x) < cst
2.5 [1] filter

float float_interval (float, float);

int main () {
float x,vy;
while (1) {
x = (0.75) » x — (0.125)* vy;
y = X5
}

return 0;

Invariants generated : —cst < —6.xx 4+ 1. xy < cst

2.6 Simple filter

int main () {
float x,y;

float k;

while (x < 4){
k=float_interval(-0.1,0.1); /% 0 %/
x = 0.68 x (x-y) + k;
y = 2%x0.68xy + x;

}

return 1;

Invariant generated : |1. % (z*) + 1. * (y * y)| < 14.892578125
2.7 Example 3

int main () {
float sO = 0,s1 = 0,r;

while (1) {
r = 1.5xs0 - 0.7+sl1l + float_interval(-0.1,0.1);
sl = s0;
sO = r;

}

return 0;

}
Invariant generated : |(—2.14285714286 * (s1 % s0) + 1.42857142857 * (s0 * s0)) + 1. * (s1 * s1)| < 0.830078125;
2.8 Linear filter

int main () {
float sO = 0,s1 = 0,r;
int N = 50;
while (N > 0) {
r = 1.5xs0 - 0.7+sl1l + float_interval(-1.6,1.6);

sl = s0;
sO = r;
N——;

}
Invariant generated : |(—2.14285714286 * (s0 * s1) 4 1.42857142857 (s1 x s1)) + 1. % (s0 % s0)| < 137.451171875
2.9 Lead lag controller

int main () {
float x0p,xlp,x0,x1;
while (1) {/*
x1 = 0.01%xx0 + x1;
x0 = 0.499%x0 — 0.05%x1 + 0.0005%x0 + float interval(—1,1);

*/

x0p = x0; xlp = x1;

x0 = 0.499xx0p - 0.05+x1p + float_interval(-1,1);
xl = 0.010xx0p + x1lp;

}

return 1;

Invariants generated :

0.02x20+ 1. 21 <=70.1172
10. x 20+ 1. x 21 <= 20.1172

2.10 Gaussian regulator

int main () {
float x0,x1,x2,tx0,txl,tx2,in;
while (1) {

in =
tx0
tx1
tx2
x0 =
x1
X2

}

return

float_interval (-1,1);
0.9379 * x0 - 0.0381 * x1 - 0.0414 % x2 + 0.0237 * in;
-0.0404 * x0 4+ 0.968 * x1 - 0.0179 * x2 4+ 0.0143 * in;
0.0142 » x0 - 0.0197 * x1 + 0.9823 * x2 + 0.0077 * in;

tx0;

tx1;

tx2;

Invariants generated :

[(1.2187798948 x 20 + 1.16137161588 x 21) + 1. * 22| < 1.171875
| — 2.45498840354 * x1 % 20 + —0.788574527791 * 22 * x0 + 0.868152061813 * x0 * 0 + 1.12295787049 * 22 x 21 +
1.73559323995 * w1 * 1 + 1. * 22 * 22| < 10.7422

2.11 Controller

int main () {
float x0,x1,x2,x3,tx0,txl,tx2,tx3,1in0,inl;

while (1) {
in0 = float_interval(-1,1);
inl = float_interval(-1,1);
tx0 = 0.6227 » x0 + 0.3871 * x1 - 0.113 % x2 + 0.0102 » x3 + 0.3064 % in0 + 0.1826 * 1inl;
txl = -0.3407 * x0 + 0.9103 * x1 - 0.3388 * x2 + 0.0649 * x3 - 0.0054 in0 + 0.6731 » inl;
tx2 = 0.0918 » x0 - 0.0265 » x1 — 0.7319 * x2 + 0.2669 * x3 4+ 0.0494 x in0 + 1.6138 * inl;
tx3 = 0.2643 * x0 - 0.1298 % x1 - 0.9903 « x2 + 0.3331 » x3 - 0.0531 » in0 + 0.4012 x inl;
x0 = tx0;
x1l = tx1;
X2 = tx2;
x3 = tx3;

}

return 1;

| —0.00203592622443 * x1 * £0 + 0.0881698609486 * 22 * x0 + —0.0355121282196 * 2:3 * 20 + 0.000315277812672 x*
20 * 0 + —0.284681200032 * 22 * x1 + 0.114660896235 * x3 * x1 4+ 0.00328678028134 x 1 *x x1 + —4.96561965553 * x3 *
22 4 6.16434464085 * 22 x x2 + 1. x 23 x £3| < 20.166015625;
| — 0.00861093083991 * 21 * 20 + 0.298520354653 * x2 % x0 + —0.126853461757 x x3 * 20 + 0.00193714038684 * 20 x*
20 4+ —0.418765740617 * 2 * 1 + 0.190035991969 * 23 * 1 + 0.00760806829668 * x1 * x1 + —4.0401517826 * x3 * x2 +
3.86658391065 * 22 * x2 + 1. * 3 x 23| < 18.212890625;
| — 0.0289556589751 x 21 * 0 + 0.339803909038 * x2 * 20 + —0.218194795294 * 23 x 20 + 0.0119022421734 * 20 * 20 +
—0.413335822158 * x2 * x1 + 0.265411087703 * x3 * x1 + 0.017610761369 * x1 * x1 + —3.11468390967 * x3 * 2 +
2.42531396428 * 22 x x2 + 1. x 23 x 23| < 5.17578125;
| —0.0177560641098 x 20 + 0.0573304481174 * x1 + —2.48280982777 * 22 + 1. * 23| < 5005.46875;
| —0.109097397647 * 20 4+ 0.132705543852 * x1 + —1.55734195483 x 2:2 + 1. x 23| < 582.03125;

2.12 Low pass filter

int main () {

float x0,x1,x2,x3,x4,tx0,txl,tx2,tx3,tx4,1in0;

while (1) {
in0 = float_interval(-1,1);
x0 = 0.4250 * tx0 + 0.8131 % in0;
x1l = 0.3167 * tx0 + 0.1016 * txl — 0.4444% tx2 + 0.1807 * in0;
x2 = 0.1278 * tx0 + 0.4444 % tx1 +0.8207 * tx2 + 0.0729 % in0;
x3 = 0.0365 » tx0 + 0.1270 * txl + 0.5202 % tx2 + 0.4163 * tx3 - 0.5714 * tx4 + 0.0208 * inO0;
x4 = 0.0147 * tx0 + 0.0512 * tx1 + 0.2099 * tx2 + 0.57104 » tx3 + 0.7694 » tx4 + 0.0084 x inO;
tx0 = x0;
txl = x1;
tx2 = x2;
tx3 = x3;
txd = x4;

Invariants generated : |1.00164325052 tx1 * tx0 + 0.000140144389337 * tz:2 * tz0 + —1.6191550573 * ta3 * tx0 +
—1.00126210564 * tx4 * tx0 4 0.72511353991 * tx0 * tx0 + 2.62046247703 * tx2 * txl + —0.618060865742 * tx3 * txl +
—2.00110233268 * tx4 * txl 4 1.00110265182 * txl * txl 4+ 1.00020053093 * tz3 * tz2 + —2.61878326237 * tx4d * tx2 +
2.61995131748 * tx2 * ta2 + 0.617955897795 * tad * tx3 + 0.999369968498 * ta3 x tw3 + 1. x twd x tad| <= 17.724609375;
|1.00123175519 * tal * tz0 + —0.999123490687 * tx2 * tx0 + 2.61966963703 * t0 * tz0 + 1.61813681368 « ta2 * tol + 1. *
tel xtxl 4+ 1. * ta2 x to2] <= 8.642578125;

	Synthesizing invariants by solving solvable loops

