N

Benchmark for pilat

Steven de Oliveira

Abstract. The following document is a compilation of some of the
benchmarks we performed with the tool PILAT. Annotations are gener-
ated by our tool, where were none before the generation.

1 test/cohencu.

Degree : 2

C

/% Generated by Frama—C x/

int cohencu(void)

{
/+«@Q ghost float k4;
/+@ ghost float k3;
/%@ ghost float k2;
/@ ghost float kI;
int _ retres;
int
int
int
int

o O OoON< X B 7

I

*/
*/
*/
*/

/@ ghost k4 = (=12 % (z * n) + 36 x (n *x n)) + 1 x (z % z);

*/

/%@ ghost k3 = —6 * n + 1 % z; x/

/@ ghost k2 = ((3 * n + —1 % (z * n)) + 3 x (n * n)) + 1 x

y; */
/*@Q ghost k1l = 1 =
/*@Q loop invariant
loop invariant
+1lxy = k2;
loop invariant
loop invariant
z) — k4;
*/
while (n <= N) {
n 4+

15 %/

Pilat emitter:
Pilat emitter:

Pilat emitter:
Pilat emitter:

1%1 — ki;
((3*n+—1x(z*n))+3*(n*n))

—6xn+1%xz — k3;
(—12%(z*n) +36%(n*n)) +1*(zx

X =Y;

y += 23

z += 6;
}
__retres = 0;
return _ retres;

2 test/cohendiv.c

Degree : 2

/% Generated by Frama—C =/

14

int cohendiv(int x, int y)

/%@ ghost float kll; x/

/*@ ghost float k10; =/

/%@ ghost float k9; =/

/+%@ ghost float k8; x*/

/@ ghost float k7; x/

/%@ ghost float k6; =/

/*@Q ghost float k5; x/

/%@ ghost float kd; =/

/%@ ghost float k3; =/

/+@ ghost float k2; x/

/*@ ghost int kl; =/

int q;

int r;

q = 0;

r = X;

/*@Q ghost k5 = 1 % 1; =/

/@ ghost k4 = 1 * y; =/

/*@Q ghost k3 = 1 % (y x y); x/

/%@ ghost k2 =1 % (q x y) + 1 % r; =/

/%@ loop invariant Pilat emitter: kls(—1x(dxy)+1xdd) = 0;
loop invariant Pilat emitter: 1x(qxy)+lxr = k2;
loop invariant Pilat emitter: 1x(yxy) — k3;
loop invariant Pilat emitter: 1xy = k4;
loop invariant Pilat emitter: 1x1 — k5;

*/

while (r >=y) {

int d;
int dd;
d = 1;
dd = y;

/+*@ ghost k11

1 % 1; %/

10

44

=

/%@ ghost k10 = 1 x dd; =/

/%@ ghost k9 = 1 = d; =/
/+*@Q ghost k8 = 1 % (dd % dd); =/
/%@ ghost k7 =1 % (d = d); */

/%@ ghost k6 = 1 % (dd = d); =*/

/%@ loop invariant Pilat emitter: 1x(ddxd) >= k6;
loop invariant Pilat emitter: 1x(dxd) >= k7;
loop invariant Pilat emitter: 1x(ddxdd) >= k8;
loop invariant Pilat emitter: 1xd >= k9;
loop invariant Pilat_ emitter: 1xdd >= kl0;

loop invariant Pilat emitter: 1x1 — kl1;
*/
while (r >= 2 * dd) {
d =2 % d;
dd = 2 % dd;
}
r —= dd;
q +=d;
}
return r;

3 test/couzot.c

Degree : 2

/* Generated by Frama—C =/
int couzot(void)

{

/@ ghost float kl; x/

int _ retres;

int x;

int y;

x = 0;

y = 0;

/@ ghost k1l =1 % 1; x/

/%@ loop invariant Pilat emitter: 1x1 — kl; =/
while (1) {

}

if (x) {
X += 2;
y ++

}

else {
X += 4;
y =Y

}

__retres = 0;
23 return _ retres;

4 test/cplx ex.c

Degree : 2
/* Generated by Frama—C x/
2| int cplx _ex(void)
1 /+«@Q ghost float kd4; x/
/+*@Q ghost float k3; x/
6 /@ ghost float k2; x/
/@ ghost float kl; x/
8 int _ retres;
int x;
10 int V3
/*@Q ghost k4 = =2 * (x * x) + 1 = (y % y); =/
12| /%@ ghost k3 =1 % 1; %/
/*@Q ghost k2 = 2 % (x x x) + 1 % (y * y); =*/
14 /*@Q ghost kl = 1 % (y % x); %/
/%@ loop invariant Pilat emitter: 1x(yxx) >= kl;
16 loop invariant Pilat emitter: 2x(xx*x)+1x(y*xy) >= k2;
loop invariant Pilat emitter: 1x1 — k3;
18 loop invariant Pilat emitter: —2x(xxx)-+1x(yxy) >= k4;
*
/
20 while (1) {
X =y +x;
22 y =2 % x — 2 % y;
X =y /2
24 }
__retres = 0;
26 return _ retres;
}

5 test/disj.c

Degree : 2

1| /* Generated by Frama—C x/
void disj(void)

/@ ghost float kl; x/

int x;

int y;

x = 0;

y = 50;

/%@ ghost k1 =1 % 1; =/

/%@ loop invariant Pilat emitter: 1x1 — kl; =/

while (x < 100)
if (x < 50) x 4+
else {
S
y +4

}

return;

6 test/divbin.c

Degree : 2

/% Generated by Frama—C =/

int divbin(void)

{
/+%@ ghost float k4; */
/@ ghost float k3; x/
/%@ ghost float k2; x/
/+@ ghost float kl; */
int _ _retres;
int
int
int
int
int
q g
r —
b —
/@ ghost k4 = —1
/%@ ghost k3 = —1
/*@Q ghost k2 = —1 b; */

/@ ghost k1l = —1 (b * b); =/
/%@ loop invariant Pilat emitter: —1x(bxb) <= kl;
loop invariant Pilat emitter: —1xb <= k2;

Weoora W

(b *x q) + -1 % r; %/
L; %/

* Ok X *x

loop invariant Pilat emitter: —1x1 — k3;
loop invariant Pilat emitter: —I1x(bxq)+—1xr =— k4;
*/
while (1) {
if (A) {

q =2 % q;

q ++
r —= b;
}
}
}
__retres = 0;
return _ retres;

7 test/djikstra.c

Degree : 2

/% Generated by Frama—C x/

(pxp) + 1% (v xq); */

Pilat _emitter: kls(((—4*(h*p)+4x(p*p))+—1x(qxq))+1*(hx

int djikstra(void)
{
/%@ ghost float k5; =/
/+@ ghost float k4; */
/@ ghost float k3; x/
/%@ ghost float k2; x/
/*@Q ghost int kl; x/
int n;
int p;
int q;
int r;
int h;
p = 0;
q = 1;
r = n;
/+%@ ghost kb = 1 % 1; x*/
/@ ghost k4 = 1 * q; =/
/%@ ghost k3 = 1 x
/*@ ghost k2 = 1 % (q x q); */
/*@ loop invariant
h)) = 0;
loop invariant Pilat emitter:
loop invariant Pilat emitter:
loop invariant Pilat emitter:
loop invariant Pilat emitter:
*/
while (q != 1) {
r =r;
q /=4

1x(q*xq) <= k2;

L#(p*p) +1x(r*q) <= k3;
1xq <= k4;

1x1 =— kb;

©

p /= 2
if (r>=h) {

34 p += q;
r — h;
36 }
}
38 return p;

}

8 test/eucli div.c

Degree : 2

/* Generated by Frama—C x/
int eucli div(void)

K
/*@Q ghost float kd; x/
5| /+x@ ghost float k3; x/
/%@ ghost float k2; x/
7 /+%@ ghost float kl; %/
int _ retres;
9 int X3
int y;
11 int q;
5| /%@ ghost k4 = 1 % (y * y); */
/@ ghost k3 =1 = x + 1 % (q x y); %/
15 /+*@Q ghost k2 =1 % y; =/
/%@ ghost k1l = 1 % 1; =/
17 /@ loop invariant Pilat emitter: 1x1 =— kl;
loop invariant Pilat emitter: 1xy — k2;
19 loop invariant Pilat emitter: lxx+1x(qxy) =— k3;
loop invariant Pilat emitter: 1x(yxy) =— k4;
21 */
while (1) {
23 X —=Y;
q ++
25 }
__retres = 0;
27 return _ retres;

34

9 test/fermat2.c

Degree : 2

/% Generated by Frama—C x/

int fermat2(void)

{
/@ ghost float k2; x/
/*@Q ghost float kl; x/
int _ retres;
int
int
int
int
int

* R+ 1;

HMH<F;UZ|

r =R * R—- N;
/%@ ghost k2 = 1 % 1; =/

/%@ ghost k1 = (((4 * u+ —2 % (u *x u)) + —4 * v) + 2 % (v =

v)) + 8 x r;

*/

/+@Q loop invariant

Pilat _emitter: (((4xu+—2x(ukxu))+—4*v)+2*(vkv))+8xr —

kl;
loop invariant Pilat emitter:
*/
while (r != 0)
if (r > 0) {
r —= v;
v = 2;
u = u;
}
else {
r += u;
u += 2;
v = v,
}
__retres = (u — v) / 2;
return _ retres;

}

1x1 —

k2

10 test/fibonacci.c

Degree : 2

=

/* Generated by Frama—C x/
int fibonacci(void)
{
/@ ghost float k2; x/
/@ ghost float kl; x/
int _ retres;
int xnl;
int xn;
/%@ ghost k2 = (1 % (xn % xnl) + —1 % (xnl % xnl)) + 1 % (xn
x xn); */
/%@ ghost k1 =1 % 1; =/
/+*@Q loop invariant Pilat emitter: 1x1 — kl;
loop invariant
Pilat _emitter: (1lx(xn#xnl)+—1x(xnlsxnl))+1x(xnxxn) =
k2;
*/
while (1) {
xnl += xn;
xn = xnl — xn;
}
__retres = 0;
return _ retres;

11 test/forward.c

Degree : 2

/% Generated by Frama—C x/

void forward (int n)

{
/*@ ghost float k3; =/
/%@ ghost float k2; x/
/*@Q ghost float kl; x/
int i;

aj;
b;
0;

b = 0;

/%@ ghost k3 = 1 x

/+*@Q ghost k2 = (=3

/+@ ghost k1 = (
) 2w

i+ 1=%a)+1=xb; %/
(((=6 * (a x i) + =6 % (b x 1)) + 9 % (i = i

b * a)) +

N
o

1 % (a=*xa)) +1=* (b=xb);

*/
/*@Q loop invariant
Pilat emitter:
((((—6%(axi)+—6x(bxi))+9x(ixi))+2x(bxa))+1x(axa))
+1%(bxb) = kl;
loop invariant Pilat emitter: (—3xi+1xa)+1sxb =— k2;
loop invariant Pilat emitter: 1x1 — k3;
*/
while (i < n) {
if (a) {
a ++;
b += 2;
}
else {
a += 2;
b ++;
}

i+t

return;

12 test/gcd2.c

Degree : 2

/+ Generated by Frama—C x/

int gcd2(void)

{
/+@ ghost float k4; x/
/%@ ghost float k3; */
/%@ ghost float k2; x/
/+%@ ghost float kl; */
int x;
int y;
int a;
int b;
int p;
int q;
int r;
int

a
b =
p =
q

=

}

/*Q
/%@
/*Q
/*Q

*/

0;

= 1;

ghost
ghost
ghost
ghost
loop
loop
loop
loop

k4 1 =*
k3 = —1 x
k2 = —1 %
kl = —1 %
invariant
invariant
invariant
invariant

while (a != b)
if (a >

}

a ——

p —
r ——

else {

}

b —
q —=
s ——

return a;

b) {
b;
q;
s;

1; =/

(q * a) +1
(s « a) +1
(s xp) +1

Pilat _emitter:
Pilat emitter:
Pilat emitter:
Pilat _emitter:

p * b); x/

rox b); %/

rokq); ox/
—1x(s*p)+1x(r=*q)
—1x(sxa)+1x(r*b) =
—1x(g*a)+1x(pxb) =
1%1 — k4

13 test/gcd nested.c

Degree : 2

/* Generated by Frama—C x/
int gcd2(void)

{

/*Q
/*Q
/+@
/*Q
int
int
int
int
int
int
int
int

ghost
ghost
ghost
ghost
x;
Y
aj;

b;

float k4;
float k3;
float k2;
float kI1;

*/
*/
*/
*/

i

q f—
/*Q
/%@
/*Q
/*Q
/%@

k4
k3 =

1 % 1; %/
-1 % (q x
k2 -1 % (s x
kl = -1 % (s =
invariant Pilat
invariant Pilat
invariant Pilat
invariant Pilat

ghost
ghost
ghost
ghost
loop
loop
loop
loop

*/
while (a != b)
if (a > b) {

return a;

a) + 1
1

* % ¥

p) + 1
emitter :
emitter:
emitter :
emitter :

(p * b); */

(r = b); =/

(r = q); =/
—1x(s*p)+1x(r=*q)
—1x(s*a)+1x(r*b)
—1x(qx*a)+1x(pxb)
151 — k4

k1;

k3;

14 test/hard.c

Degree : 2

/* Generated by Frama—C x/
int hard(void)

/%@ ghost float k7; =/
/+@ ghost float k6; */
/*@ ghost float k5; =/
/%@ ghost float kd; =/
/+%@ ghost float k3; */
/@ ghost float k2; x/
/%@ ghost float kl; =/
int _ retres;

int N;

int D;

int r;

int ds;

int p;

int q;

N}

4

=

-

r = N;
ds = D;
p=1;
q = 0;
/@ ghost k7 = 1 =«
/+*@Q ghost k6 1 *
/@ ghost kb 1 *
/*@Q ghost k4 1 *
/+*@Q ghost k3 1 *
/+x@Q ghost k2 1 =
/@ ghost k1l = 1 =«
/+*@Q loop invariant
loop invariant
loop invariant
loop invariant
loop invariant
loop invariant
loop invariant
*/
while (p != 1) {
ds /= 2;
p /= 2;
if (r >= ds) {
r — ds;
q = p;
}
}
__retres = 0;
return _ retres;

1y %/
ds; x/

(p* 1) + 1 x (q* ds); «/

p; */

(p * ds); =/
(ds = ds); =/
(p * p); */

Pilat emitter:
Pilat _emitter:
Pilat emitter:
Pilat _emitter:
Pilat _emitter:
Pilat emitter:
Pilat emitter:

1x(p*p) <= kl;
1x(

dsxds) <= k2;

1x(pxds) <= k3;
1xp <= k4;

1x(px*1)+1x(qxds) <= k5;

1xds <= k6;
11 =— k7;

15 test/hybrid automata.c

Degree : 2

/* Generated by Frama—C x/
int hybridautomata (void)

{

/%@ ghost float k10; =/
/%@ ghost float k9; =/
/@ ghost float k8; x/
/%@ ghost float k7; =/
/%@ ghost float k6; =/
/@ ghost float k5; x/
/@ ghost float kd4; x/
/+*@Q ghost int k3; x/

/%@ ghost int k2; x/

19

4

/%@ ghost int kl; x/
int _ retres;
float x;
float y;
/@ ghost k4 = 1. * 1; =/
/+*@Q loop invariant
Pilat _emitter: (klx(1.%(y*x))+k2x*(0.x(y*x)+1.xy))+k3
#(Lox(y*y)) = 03
loop invariant Pilat emitter: 1.x1 — k4;

*

/

while (1) {
/%@ ghost k7 = (—=2. % (y * x) + 1. % (x % x)) + 1. % (y =
y)s */

/%@ ghost k6 = —1. « x + 1. % y; %/
/%@ ghost kb = 1. % 1; %/
/*@Q loop invariant Pilat emitter: 1.x1 = k5;
loop invariant Pilat emitter: —1l.xx+1.xy — k6;
loop invariant Pilat emitter: (—2.%(yxx)-+1.%x(x*x))
+1.x(y*xy) = k7;
*/

while (x < (float)5) {
x = (float) ((double)x + 0.25);
y = (float) ((double)y + 0.25);
if (x > (float)4) break;
}
x = (float)O0;
/*@Q ghost k10 = (—=2. % (y * x) + 1. % (x * x)) + 1. % (y x
y)s o/

/%@ ghost k9 = —1. « x + 1. % y; =/

/*@Q ghost k8 = 1. % 1; x/

/%@ loop invariant Pilat emitter: 1.x1 = k8;
loop invariant Pilat emitter: —1.xx+1.xy — k9;
loop invariant Pilat emitter: (—2.%(y*x)-+1.%x(x*x))

+1.x(yxy) = k10;

*/

while (y < (float)10) {

(
x = (float) ((double)x + 0.25);
(

y = (float) ((double)y + 0.25);
if (y > (float)9) break;
}
y = (float)O0;
}

return _ retres;

16 test/illinois.c

Degree : 1

/% Generated by Frama—C x/
int illinois (void)

A {

/*@Q ghost float k2; x/
/@ ghost float kl; x/
int _ retres;

7 int dirty;

int shared;

9 int exclusive;

int invalid;

11 exclusive = 0;
dirty = 0;
13 shared = 0;

/*@ ghost k2 = 1 % 1; =/
5| /%@ ghost k1l ((1 % dirty + 1 % shared) + 1 % exclusive) +
1 % invalid; x*/
/*@ loop invariant
17 Pilat _emitter: ((lxdirty+lxshared)+1lxexclusive)+1x
invalid = kl1;
loop invariant Pilat emitter: 1x1 — k2;

19 */

while (1) {

21 exclusive = exclusive;
dirty = dirty;

23 shared = shared;

invalid = invalid;
25 if (shared) {
invalid ——;

27 exclusive ++;

}

29 else
if (shared) {
31 invalid ——;
dirty ——;
33 shared 4+= 2;
}
35 else
if (shared) {
37 invalid ——;
shared = (shared + exclusive) + 1;
39 exclusive = 0;
}
41 else
if (shared) {
13 invalid -

shared = (shared + exclusive) + 1;

69

exclusive = 0;

}

else
if (shared) {
exclusive ——;
dirty ++;
}
else
if (shared) {
invalid = (invalid + shared) — 1;
dirty ++;
shared = 0;
}
else
if (shared) {
invalid = (((invalid + exclusive) + dirty) +
shared) — 1;
exclusive = 0;
shared = 0;
dirty = 1;
}
else
if (shared) {
dirty ——;
invalid +-+;
}
else
if (shared) {
shared ——;
invalid ++;
}
else {
exclusive ——;
invalid +-+;
}
}
return _ _retres;

17 test/knuth.c

Degree : 3

1| /* Generated by Frama—C x/

int knuth(void)

/*@Q ghost int k36; x/

~

43

int k35; %/
int k34; x/
int k33; x/
int k32; x/
int k31; x/
int k30; x/
int k29; x/
int k28; x/
int k27; x/
int k26; x/
int k25; %/
int k24; x/
int k23; %/
int k22; x/
int k21; %/
int k20; x/
int k19; %/
int k18; x/
int k17; x/
int k16; */
float k15; x/
int kl14; x/

float k13; =/
float k12; x/

float kl11l; =/
int k10; =/
float k9; x/
int k8; x/
float k7; =/
float k6; x/

float kb; =/
float k4; x/
float k3; =/
float k2; x/
float kl; x/

61

63

69

71

81

83

91

93

97

r = n % d;

d -4+ (n/ (d-2) —n/d);

/%@ ghost k15 = 1. = 1; =/

/%@ ghost k13 = 1. = 1; %/

/%@ ghost k12 = 1. % 1; %/

/%@ ghost k11 = 1. % 1; =/

/%@ ghost k9 = 1. = 1; %/

/+*@Q ghost k7 1. % 1; %/

/%@ ghost k6 = 1. = 1; =/

/@ ghost k5 = (((8. = 1t + —4. % (d * r)) + 4. %« (d * rp)) +
2. % (d x q)) +

1. %« (d * (d = q));

*/

/%@ ghost k4 = 1. = 1; =/

/@ ghost k3 = (((8. = r + —4. % (d x= r)) + 4. %« (d * rp)) +
—2. % (d % q)) +
1. %« (d * (d = q));
*/
/%@ ghost k2 = 1. = 1; %/
/@ ghost k1 = (((8. = r + —4. % (d = r)) + 4. % (d * rp)) +

—2. % (d % q)) +
1. % (d x (d % q));
*/
/*@ loop invariant
Pilat emitter:
(((8.%r+—4.x(d*r))+4.%(d*rp)) +—2.%(d*q)) +1.x(d=*(d*q)
) >= ki;
loop invariant Pilat emitter:
loop invariant
Pilat _emitter:
(((8.%r+—4.x(d*r))+4.%(d*rp))+—2.%(d*q)) +1.x(d=*(d*q)
) <= k3;
loop invariant Pilat_ emitter:
loop invariant
Pilat _emitter:
(((8.%r+—4.x(d*r))+4.%(d*rp))+—2.%(d*q)) +1.x(d*(d*q)

1.x1 >= k2;

1.%x1 <= k4;

) = k5;
loop invariant Pilat_ emitter: 1.x1 — k6;
loop invariant Pilat_emitter: 1.x1 >= k7;
loop invariant Pilat emitter: k8% (1.x1) = O0;
loop invariant Pilat emitter: 1.x1 >= k9;
loop invariant Pilat emitter: kl0x(1.x1) = 0;
loop invariant Pilat emitter: 1.x1 <= kl1;
loop invariant Pilat emitter: 1.x1 <= kl12;
loop invariant Pilat_emitter: 1.x1 >= kl13;
loop invariant Pilat emitter: kldx(1.x1) = 0;

101

103

105

107

109

loop invariant Pilat emitter: 1.x1 >= kl15;
loop invariant
Pilat emitter:

CCCCCCCCCCCCCCCCCCCRIE*(=Lox(tx(txrp)) +1x(tx(txt)))
+k17*(—1.%

(t*xrp)+1.%

(txt)))+kl8x
(=1.xrp+1.%t))+k19x(—1.%(d=x(d*rp)
Y+1.x(tx(dxd))))+k20=
(=1.x(tx(d*rp))+1.%(t*x(t*d))))+k21
*(—1.x(d*rp)+1.x%

(txd)))+k22x

(—=L.x(ax(q*rp)) +1.x(t*(qxq))))+k23
x(—1.x(tx(gxrp))+1.x

(t*(txq))))+k24x
(=1.%(gxrp) +1.x(t*xq)))+k25%(—1.x(d=*(qx
rp))+ 1.k

ezt (t*(dxq)))
k26 %(—1.%

(t=
(t*rp))+1.x
(rpx

(rp*rp))))+k27x%
(=1.x(tx(t*xrp))+1.%(t*x(rp*xrp))))+k28
(—1.x(t(dxrp))+1.x
(d
*(rp*rp))))+k29x
(—1.x(t*x(gxrp))+1.x(g*(rpxrp))))+k30*(—1.x(t
xrp)+1.%
(rp*
rp)))+k31x
(=1.x(rpx(rxr))+1.x(tx(r*xr))))+k32x(—1.x(t*(rp

(t*(tx*r))

(=1.x(rpsr)+1.x(t*r)))+k34*(—1.%(d*(rp*r))+1.%(t
x(d*r))))+k35%
(—1.x(gx(rp*xr))+1.x(t*x(qxr))))+k36x(—1.x(t*(rp*r))
+1.x(rp*(rpxr)))

w1)) +1.%

))+k33x

149

161

if (s >=d) {
if (! (r != 0)) break;
}

else break;

if ((2 x1r —1rp) +qg<0){

t =r

r=(((2 *t—rp) +q)+d) + 2

else goto LAND 1;
}
else {
_LAND 1: ;
if ((2 xr—r1p) +q>=0) {
if ((2 xr—1p)+q>=d+ 2) {
if ((2xr—1rp)+qgq<2x*xd+4) {
t = r;
r=(((2 *r—rp)+aq)—d) — 2;
rp = t;
q_:47
d += 2
}
else goto LAND 0;

}
else goto LAND O0;

I

}
}
}

return d;

46

18 test/lcml.c

Degree : 2

/% Generated by Frama—C =/

int leml(int a, int b)

{
/*Q@Q ghost float k16; x/
/@ ghost float k15; x/
/@ ghost float kl4; x/
/+*@Q ghost float k13; x/
/%@ ghost float k12; =/
/+*@Q ghost float kll; x/
/*@Q ghost float k10; x/
/*@ ghost float k9; =/
/%@ ghost float k8; =/
/*@Q ghost float k7; x/
/*@ ghost float k6; =/
/%@ ghost float k5; =/
/%@ ghost float k4; x/
/*@ ghost float k3; =/
/@ ghost float k2; x/
/*@Q ghost float kl; x/
int _ _retres;
int x;
int y;
int u;
int v;
X = a;
y = b;
u = b;
v = 0;
/@ ghost k2 =1 * 1; x/
/*@ghostklzl*(u*x)+1*(v*y),*/
/%@ loop invariant Pilat emitter: u*x)+1*(v*y

loop invariant Pilat emitter: 1*1 — k2;

*/
while (x !=y) {

/%@ ghost k9 = 1 % (u x u); =/

/%@ ghost k8 = 1 % u; %/

/*@Q ghost k7 = 1 % (y % y); x/

/@ ghost k6 = 1 % (u * x) + 1 % (v x y); x/

/%@ ghost kb =1 % (u x y); =/

/+%@ ghost k4 = 1 % y; */

/%@ ghost k3 = 1 % 1; %/

/+*@Q loop invariant Pilat emitter: 1x1 =— k3;
loop invariant Pilat emitter: 1xy — k4;
loop invariant Pilat emitter: 1x(uxy) =— kb;
loop invariant Pilat emitter: 1x(uxx)-+1x(vky)
loop invariant Pilat emitter: 1x(yxy) =— kT7;

kl1;

k6 ;

loop invariant Pilat_ emitter: 1xu — k8;

18 loop invariant Pilat emitter: I1x(uxu) =— k9;
*/

50 while (x > y) {

X —=y;
52 vV += u;
}
54 /%@ ghost k16 = 1 % (v % v); %/
/%@ ghost k15 = 1 % v; %/
56 /%@ ghost k14 =1 % (u x x) + 1 % (v % y); */
/%@ ghost k13 = 1 % (x x x); %/
58 /%@ ghost k12 = 1 % (v % x); %/
/%@ ghost k11 = 1 x x; =/
60 /%@ ghost k10 = 1 % 1; %/
/%@ loop invariant Pilat emitter: 1x1 — k10;
62 loop invariant Pilat emitter: 1xx — kl1;
loop invariant Pilat emitter: 1x(vkx) =— k12;
64 loop invariant Pilat emitter: 1x(x*x) = k13;
loop invariant Pilat emitter: Isx(uxx)-+1x(vxy) =— kl4;
66 loop invariant Pilat emitter: 1xv — kl15;
loop invariant Pilat emitter: 1x(vxv) =— kl16;

68 * /
while (x < y) {

70 y — Xj
u +— v;
72 }
74 __retres = u + v;
return _ retres;

19 test/lcm2.c

Degree : 2

/* Generated by Frama—C x/
int lcm2(void)

1| /+@ ghost float k2; x/

/%@ ghost float kl; =/

6 int _ _retres;

int a;

8 int b;
int x;

10 int y:

int u;

12 int v;

X = a;
14 y = b;
u = b;
16 vV = aj;

/@ ghost k2 =1 * 1; =/
5| /+«@ ghost k1 =1 % (u * x) + 1 % (v *x y);

2| while (x != y)
if (x>vy) {

24 X —=Y;

vV +— u;
26

else {

28 y — X;

u += v
30 }

__retres = (u + v) / 2;

32 return _ retres;

*/

/%@ loop invariant Pilat emitter: 1x(uxx)+1x(vxy)
20 loop invariant Pilat emitter: 1x1 — k2;

kl1;

20 test/mannadiv.c

Degree : 1

/* Generated by Frama—C =/
int mannadiv(void)

{

=

/@ ghost float kl; x/
int _ retres;
int x1;
7 int x2;
int y1;
9 int y2;
int y3;
11 yl - 0;
y2 = 0;
13 y3 = x1;
/%@ ghost k1l = —1 % 1; %/
15| /+*@Q loop invariant Pilat emitter: —1x1 —
while (1) {
17 if (y2 +1 = x2) {
vyl ++;
19 y2 - 0;
y3 —=;
21 }

N
o

else {

y2 ++;
y3 —=;
}
}
__retres = 0;
return _ retres;
}
21 test/mesi.c
Degree : 1

IR

/% Generated by Frama—C =/
int mesi(void)

/*@Q ghost int k2; =/
/%@ ghost float kl; =/
int _ retres;
int s;
int e;
int m;
int i;
int N;
s = 0;
e 0;
m = 0;
i = 0;
N = 30;
/@ ghost k1l =1 % 1; =/
/*@Q loop invariant Pilat emitter:
loo
*/
while (N > 0) {
N ——;
if (i = 0) {
s = (s + e) + m;
==
e = 0;
m = 0;
}
else
if (e 1= 0) {
s = s;

1x1 — kl;

invariant Pilat emitter: k2x(((—1x1+1%s)-+1xe)-+1xun)

S
39 e =
m

41 }
43 __retres = 0;
return _ retres;

22 test/moesi.c

Degree : 1

/* Generated by Frama—C x/
int moesi(void)

K

/*@ ghost float k2; x/
/%@ ghost float kl; =/
int _ retres;
7 int modified;
int shared;
9 int exclusive;
int invalid;
11 int owned;
exclusive = 0;
13 modified = 0;
shared = 0;
15| /+«@ ghost k2 = (((1 % modified + 1 % shared) + 1 * exclusive
) + 1 % invalid) +
1 * owned;

*

/

19 /%@ ghost k1 = 1 % 1; %/

/*@Q loop invariant Pilat emitter: 1x1 — kl;

21 loop invariant

Pilat _emitter:

23 (((I*modified+1xshared)+1xexclusive)+1xinvalid)+1x
owned =— k2;

*/

25 while (1) {

modified = modified;

27 shared = shared;

exclusive = exclusive;

41

49

invalid = invalid;
owned = owned;
if (invalid) {
shared = (shared + exclusive) + 1;
owned += modified ;
invalid ——;
exclusive = 0;
modified = 0;
}
else
if (exclusive) {
exclusive ——;
modified +-+;
}
else
if (shared) {
invalid = ((((invalid + modified) + exclusive) +
shared) + owned) — 1;
shared = 0;
exclusive = 1;
modified = 0;
owned = 0;
}
else
if (owned) {
invalid = ((((invalid + modified) + exclusive) +
shared) + owned) — 1;
shared = 0;
exclusive = 1;
modified = 0;
owned = 0;

else {

invalid = ((((invalid + modified) + shared) +
exclusive) + owned) — 1;

shared = 0;
exclusive = 1;
modified = 0;
owned = 0;

}

}

return _ retres;

10

23 test/prod.c

Degree : 2

/* Generated by Frama—C x/
int prod(void)

{
/*Q
/xQ
/*@Q
/*Q
int
int
int
int
/%@
/*Q
/*Q
/+@
/*Q

*/

ghost
ghost
ghost
ghost

float k4;
float k3;
float k2;
float kl1;

___retres;

X3
Y

z;
ghost
ghost
ghost
ghost
loop
loop
loop
loop

k4 =1
k3 =1
k2 =1
kl =1 x
invariant
invariant
invariant
invariant

*
*
*

while (1) {
if (x) {

Z +— X;

}

X k=

23

*/
*/
*/
*/

(x = x); =/
x; */
1; =/

(y = x) + 1 % z; =/

Pilat _emitter:
Pilat emitter:
Pilat emitter:
Pilat emitter:

y=((y—-1) / 2

else {

}
}

X k—

y /=

zZ = Z

2;
23

)

__retres = 0;
return

retres;

1x(y*x)+1xz — kl;
1#1 — k2
1xx >= k3;

1x(x*xx) >= k4;

24 test/prod4br.c

Degree : 2

1| /* Generated by Frama—C x/
int prod4br(void)

N
B

/@ ghost float k3; x/

/@ ghost float k2; x/

/@ ghost float kl; x/

int a;

int b;

int p;

int q;

/+*@Q ghost k3 -1 % (p % p); */

/*@Q ghost k2 = —1 * p; =/

/%@ ghost ki -1 % 1; %/

/@ loop invariant Pilat emitter:
loop invariant Pilat emitter:
loop invariant Pilat emitter:

else break;

if (a % 2 0) {
if (b% 2 =—0) {
a /= 2;
b /= 2;
p =4 % p;
}
else goto LAND 1;
}
else {

_LAND 1: ;
if (a%2—=—1) {
if (b% 2 =0) {

a ——;
q += b * p;
}
else goto LAND 0;
}
else {
LAND 0: ;

if (a % 2 — 0) {
if (b%2— 1) {

b ——;
q = a * p;
}
else goto LAND;
}
else {
_LAND: a ——;
b]

—1%1 — k1;
—1xp >= k2;
—1x(pxp) >= k3;

}
}
}

return p;

25 test/prodbin.c

Degree : 2

/+ Generated by Frama—C x/

2[int prodbin(int a, in
{
/+@ ghost float k4;
/+x@Q ghost float k3;
/+*@Q ghost float k2;
/+@ ghost float kl;
int x;
int y;
int z;
X = a;
y = b;
z = 0;
/@ ghost k4 = 1 =«
/+*@Q ghost k3 = 1 =«
/%@ ghost k2 = 1 x
/@ ghost k1l = 1 =«
/*@Q loop invariant
loop invariant
loop invariant
loop invariant
*/
while (y != 0) {
if (y%2=—1) {
Z += X;
y —
}
X = 2 % X;
y /= 2
}
return z;

t b)

*/
*/
*/
*/

(x * x); =*/
x; %/
1; */

(y *« x) + 1 % z; */

Pilat emitter:
Pilat _emitter:
Pilat emitter:
Pilat emitter:

1x(y*x)+1lxz —
1#1 — k2;
1xx >= k3;

1 (xxx) >= k4;

k1;

26 test/read writ.c

Degree : 1

/% Generated by Frama—C x/
int read writ(void)

3 {
float
float

/*Q
/*Q
/%@
7 /*@
int
9 int
int c2;
11 int kO;
int r;
13 int w;
int k;
15 r = 0;
w = 0;
17 k —
/%@
19 /*@
/*Q
21 /*@

k4 ;
k3;
k2;
k1;

ghost
ghost
ghost float
ghost float
~_retres;
cl;

*/
*/
*/
*/

k4 =1
k3 =1
k2 1 =*
kl =1

L x/
cl; %/
c2; x/
kO; */

/x@

43

invariant
invariant
invariant
invariant

Pilat _emitter:
Pilat _emitter:
Pilat emitter:
Pilat _emitter:

1xk0 =— k1;
1xc2 = k2;
1xcl — k3;
11 — k4;

a7 }
else {
19 W o ——
k += c2;
51 }
}
53 __retres = 0;
return _ retres;
s5] }

27 test/sqrt.c

Degree : 2

/* Generated by Frama—C x/
int sqrt(int n)

ik
/@ ghost float kd; x/

5| /*@Q ghost float k3; x/

/+%@ ghost float k2; x/

7 /@ ghost float kl; x/

int a;

9 int su;

int t;

11 a = 0;

su = 1;

13 t = 1;

*/

su; x/
17| /%@ ghost k1 = 1 % 1; %/

+1xsu =— k2;

— k4;
*/
23 while (su <= 1’1) {
a ++;
25 t 4= 2;
su += t;
27 }

return a;

15| /%@ ghost k3 = =2 x a + 1 x t;
/*@Q ghost k2 = ((=1 = a + -1 % (t = a)) + 1 % (a * a)) + 1 =

*/

/*@Q loop invariant Pilat emitter:
19 loop invariant Pilat emitter:

loop invariant Pilat emitter:
21 loop invariant Pilat emitter:

/@ ghost k4 = (=4 % (t % a) + 4 % (a % a)) + 1 % (t * t);

151 — k1;
((—lxa+—1x(txa))+1x(axa))

—2k%a+1xt =— k3;
(—4=x(txa)+4x(axa))+1x(t*xt)

31/ int main(void)
{
int tmp;

tmp = sqrt (16);
return tmp;

1

28 test/petter 1l.c

Degree : 2

/% Generated by Frama—C =/
int petterl(int N)

{
4 /*@Q ghost float k2; =/

/%@ ghost float kl; =/

6 int x;

int y;

8 X = 0;

y = 03

10 /*@Q ghost k2 = (=2 % x + =1 x y) + 1 % (y *x y); */

/*@ ghost k1l = 1 % 1; %/

12 /%@ loop invariant Pilat emitter: 1x1 = kl;

loop invariant Pilat emitter: (—2sx+—1xy)+1x(yxy) =— k2;

14 * /
while (y < N) {

16 X +=1Y,;
y ++
s }

y —;
20 return x;

29 test/petter 2.c

Degree : 3

1| /* Generated by Frama—C x/
int petter2(int N)
14
/@ ghost float k2; x/
/+*@Q ghost float kl; x/
int x;

int y;
x = 0;
y = 0;
/%@ ghost k2 = ((=6 * x + 1 % y) + =3 % (y = y)) + 2 * (y =
(y = y))s =/
/%@ ghost k1l = 1 % 1; %/
/%@ loop invariant Pilat emitter: 1x1 = kl;
loop invariant Pilat emitter: ((—6sx+1xy)+—3%(y*y))+2x(y
#(yxy)) — k2;
*/
while (y < N) {
X =Yy *Y¥;
y 3
}
y —;
return x;

30 test/petter 3.c

Degree : 4

:5{

/% Generated by Frama—C =/
int petter3(int N)

/+@ ghost float k2; x/

/*@ ghost float kl; =/

int x;

int y;

x = 0;

y = 03

/*@ ghost k2 = ((=4 = x + 1 x (y xy)) + =2 x (y * (y *y)))

y *¥)));

*
/
/@ ghost k1l =1 % 1; =/
/%@ loop invariant Pilat emitter: 1x1 = kl;
loop invariant
Pilat _emitter: ((—4xx+1x(yxy))+—2x(y*(yxy)))+1x(y*(y=*(
y*y))) = k2;

)

21 while (y < N) {
X 4= (y *x y) * y;
23 y 4+
}
25 y —;
return x;
27 }

31 test/petter 20.c

Degree : 21

/% Generated by Frama—C x/
int petter20(int N)

Ii{

/@ ghost float k2; x/

/*@Q ghost float kl; x/

int x;

7 int y;

x = 0;

9 y = 0;

/%@ ghost k2 = (((((((((((—6930 * x + —3666831 * y) +

24126850 = (y * (

y £ y))) +
—47625039 x (y * (y * (y * (y * y)))
)) + 44767800 x (

y ox (

y *y))))))) +
' —24551230 * (y * (y * (y * (y * (y * (

vy o+ (v * (

y *¥))))))))) +
. ((8817900 * (y = (y » (y * (y * (y * (v =
y*

vy o* (

¥))))))))))) +

—2238390 * (y * (y = (y * (y * (y * (y =

¥))))))))))))) +
426360 * (y * (v * (y * (y * (y = (y = (y

*

¥))))))))))))))) +
—65835 x (y * (y * (v * (y = (y * (v * (y

*

*¥))))))))))))))))) +
((11550 = (y = (v * (y = (y * (y * (y * (v *
y*

¥))))))))))))))))))) +
—3465 * (y * (v * (y = (y = (v * (y = (y = (

¥)))))))))))))IIII)) +

330 % (y * (y = (y = (y = (y = (y = (y = (y =

79

81

83

89

vy ox
Yy *¥)))))))))))IIIII)))

*/
/@ ghost k1 =1 % 1; x/
/%@ loop invariant Pilat emitter: 1x1 = kl;
loop invariant
Pilat emitter:
(CCCCCC(((—6930%xx+—3666831%y) +24126850(y=*(y*y)))
+—47625039%
(v (yx(y*(y*y))))) +44767800x(y*(y*(y*(y*(y
*(y*y)))))))+—24551230%
(v (v (y*(yx(yx(y*(y*(y*y))))))))) +8817900x(
y*(y*(y*

(y*
(y*
(y*
(y*
(yx
(y*

(y*¥)))))))))))+—2238390%
(yx(y*(y*(y*(yx(y*(yx(y*(y*(y*x(y*(y*y)))))))))
))))+426360%
(y*(y*(yx(yx(y*(y*(yx(y=(y*(y*(yx(y*(y*(y*y))))
)))))))))))+—65835x%
(yr(y*(yx(y*(yx(y*(yx(y*x(y*(yx(y*(yx(y*x(y*(y*(y*
¥))))))))))))))))) +11550%
(v (y*(y*(y*(yx(y*(yx(y*(y*(yx(y*(yx(y*(y*(y*(y=(
y*(y*y)))))))))))))))))))+—3465%
(y#(y*(yx(y*(yx(y*(yx(y*(y*(y*x(y*(yx(y*(yx(y*(y*(y
#(yx(y*y))))))))))))))))))))+330%

109

(v (y*(yx(y*(yx(y*(yx(yr(y*(yx(y*(yx(y*x(y*(y*x(y*(y*(
yx(y*(y*y))))))))))))))))))))
— k2;
*/

while (y < N) {
x 4= ((CCCCCCCCC((y = y) »y) *y) *y) xy) *y) *y
) FY) xy) kYY) kY) xY) kY) kYY) kY)xY) xY)ky) *
Vs
y ++

}

y —
return x;

N
(

	Benchmark for pilat

